Refactoring Aspect-Oriented Software

by

Shimon Rura

A Thesis
Submitted in partial fulfillment of
of the requirements for the Degree of Bachelor of Arts with Honors
in Computer Science

WILLIAMS COLLEGE
Williamstown, Massachusetts
May 23, 2003

Abstract

This thesis extends the state of the art in refactoring to Aspect-Oriented program-
ming. Refactorings are specific code transformations that improve the design of existing
code without changing its observable behavior. Aspect-Oriented Programming (AOP)
offers a new approach to software design by encapsulating crosscutting concerns. The
novel contributions of this thesis are a recasting of existing refactorings to preserve pro-
gram behavior in aspect-oriented code, and several new refactorings that can improve the
design of code by deploying AOP techniques. The refactorings are described in reference
to AspectJ, an AOP extension of Java, and are amenable to partial or full automation.

It is necessary to reevaluate existing OO refactorings because the constructs of AOP
programming languages significantly affect what changes can be meaning-preserving. To
this end, new preconditions and steps are introduced to about 20 fundamental refactor-
ings (from [Opd92]) such as renaming a class and inlining a method. These extended
refactorings can form the basis for an AOP-aware refactoring tool.

About thirty new AOP-specific refactorings are proposed. These refactorings include
both fundamental refactorings and more complex refactorings built from these that ad-
dress specific design problems. For example, a simple refactoring possible in AOP is
to move the definition of a method from within a class to an aspect. A more complex
refactoring that includes this is moving all code responsible for implementing a particular
interface into an aspect. The focus is primarily on accomplishing the desired changes
once the involved program parts are identified. These new refactorings can form the
basis for a truly AOP-focused refactoring tool.

Acknowledgements

None of this work, the big abstract thinking or the oodles of writing, would have been
possible without my advisor, Barbara Lerner. Since I started working with Barbara, I've
done some of the most challenging and fun work I can recall. I have started to understand
and enjoy the peculiarities of research. For all your persistent attention, your flexibility,
and your skill in prodding me to work hard, Barbara, thank you.

Thanks are also due to Kim Bruce, my second reader. I could hardly wish for a more
responsive, insightful, or conscientious reader—especially for a subject so closely related
to programming languages. I had the privilege of studying Programming Languages with
Kim as my instructor, an experience that developed my existing interest and provided
me with a thorough foundation in the discipline.

This work builds on a number of different sources, too many to give adequate thanks
to them all. But foremost among these are the Ph.D. thesis work of Williams F. Opdyke
and the AspectJ language and tools developed at the Palo Alto Research Center and
other organizations. The quality and relevance of their work inspired and guided much
of mine.

Thanks to all of my dear friends who have amused, supported, and loved me this
year. Special thanks my lab and dorm mate Josh Ain, with whom I always get along well.
Thanks to my friends in CS and Williams Students Online, especially Brent “the cool”
Yorgey, Tom “suddenly hacking the WSO site” White, Jesse “Pants?” Dill, Evan “54
and light rain” Miller, Chris “the $6000 man” Douglas, Steve Winslow, Robin Stewart,
Chris Cyll, Ben Cohen, and Dan Weintraub. And thanks to my closest friends Jenny,
David, Beth, Ben, and my mom Lyenna Rura for always being there for me.

And finally, thanks to the wonderful faculty and staff in the Computer Science de-
partment at Williams College. I know and admire all of you, and I can’t imagine a finer
group of people to study with. Thanks to Andrea Danyluk for advising me early on,
teaching me in 3 excellent courses, and helping to keep the department cheerful. Thanks
to Bill Lenhart for being an awesome prof and understanding what thesis crunch time
means. Thanks to Duane Bailey for encouraging myself and other students to work hard,
to have fun, and to take pride in our work. Thanks to Steve Freund for having a ponytail
and riding bikes. Thanks to Tom Murtagh for teaching me all that stuff in Compilers
that ended up helping me be able to do this thesis. Thanks to Jim Teresco for giving
Josh something to do, or else I'd still be laughing too hard to get anything done. Thanks
to Mary Bailey for going out of your way to help me out and cheer me up day after day
in lab. Thanks to Lorraine Robinson for being amazingly generous of kindness, office
supplies, and snacks. I’ll miss you all.

Contents

Introduction

1.1 The Problem
1.2 Characteristics of a Solution
1.3 Organization of this Thesis
1.4 Refactoring L
1.5 Aspect-Oriented Programming
1.6 Contributions of this Thesis

Requirements for Behavior Preservation

2.1 Behavior Preservation oo
2.2 Behavior Preservation Constraints for Refactoring
2.3 Properties of AOP behavior preservation

Low-Level Refactorings Reconsidered

3.1 Creating a Program Entity
3.2 Deleting a Program Entity 0000
3.3 Changing a Program Entity
3.4 Moving a Field

Working with Patterns

4.1 Modifying Patterns o
4.2 Constituent Patterns
4.3 Field, Method, and Constructor Patterns

New Fundamental Refactorings for AOP

5.1 Aspects are Like Classes
5.2 Creating a Program Entity
5.3 Deleting a Program Entity 0oL
5.4 Changing a program entity oo
5.5 Moving Program Elements
5.6 Altering Advice

iii

25
25
27
31

33
33
35
36
46

49
49
50
52

iv

CONTENTS

High-Level AOP Refactorings 65
6.1 Move Static Introduction 65
6.2 Extract Common Members to Aspect 65
6.3 Extract Interface Support into Aspect 66
6.4 Extract Disjoint State into Aspect 66
Conclusions 67
7.1 Summary of Contributions 67
7.2 Limitations of Approach, 68
7.3 Future Work 68
AspectJ Quick Reference 73
AspectJ Grammar 77

Chapter 1

Introduction

“Design is hard. ... Reusable software usually is the result of many design iterations.”
—William F. Opdyke, Ph.D. Thesis

by defining correct and effective refactorings that operate on programs written in

an aspect-oriented programming language. Refactorings are specific code trans-
formations that improve the design of existing code without changing its observable
behavior. Aspect-Oriented Programming (AOP) offers a new approach to software de-
sign by encapsulating crosscutting concerns. Though both of these approaches are con-
cerned with enabling better design, existing work in refactoring is generally inapplicable
to AOP systems. This is because the program constructs available in AOP languages
can affect program behavior in ways that make many existing refactorings non-behavior-
preserving. Furthermore, as aspect-oriented programming becomes more commonly used
for real software systems, there is a growing need to understand refactorings that will help
programmers take advantage of aspect-oriented features. This thesis works toward the
two goals of extending existing refactorings for AOP and developing new, AOP-specific
refactorings.

T his thesis extends the state of the art in refactoring to aspect-oriented software

1.1 The Problem

Aspect-oriented programming languages augment object-oriented languages with con-
structs that can alter program structure and behavior across module boundaries. When
refactoring a program that contains these constructs, it may not be sufficient to apply
refactorings that only analyze and transform object-oriented parts of the code—AOP
language features can change inheritance hierarchies, add members to classes, or invoke
code when certain well-defined points in program execution are reached. For example,
consider renaming a method setX(int) in a class Foo. In pure OO code, it is enough

2 CHAPTER 1. INTRODUCTION

to check that the new name will not conflict with another method in Foo and fix all ref-
erences (calls) to setX(int). However, in the Aspect] language (an extension of Java),
we might write some code that depends on setX as follows:

after() : call(Foo.setX(..)) { notifyObservers(); }

This is a line of advice that will trigger a code block, here notifyObservers (), after the
completion of every call to any method in Foo called setX. If we rename setX without
adjusting the method pattern we use here to match its signature, this advice will no
longer be triggered, notifyObservers () will not be executed after calls to the method,
and program behavior will not be preserved. To be able to apply refactorings like this
correctly, we must determine what kind of extra work is needed to make each refactoring
behavior preserving in aspect-oriented programs.

A problem separate from but related to fixing OO refactorings for AOP is setting
down new, AOP-specific refactorings. AOP’s greatest strength is in encapsulating cross-
cutting concerns. But if the implementation of a concern is already spread throughout
our software, how do we abstract those scattered pieces into an aspect while making
certain not to change what our program does? This challenge calls for a set of new,
AOP-specific refactorings.

1.2 Characteristics of a Solution

Updating Object-Oriented Refactorings. We must show how known refactorings
can be made behavior-preserving when applied in a specific AOP programming language.
There are several works that describe refactorings (see section 1.4.1), each with slightly
different goals like developing automated refactoring tools [Opd92] or helping practicing
programmers familiarize themselves with specific ways to improve design [Fow00]. Of
these, this thesis builds primarily on William Opdyke’s Ph.D. thesis work [Opd92], the
first to consider refactoring in object-oriented software. Opdyke distills the more complex
0O refactorings down to iterative applications of simpler, fundamental refactorings. This
approach is particularly well suited as a basis for extending refactorings to AOP, because
if the fundamental refactorings can be adapted, the higher-level refactorings are trivially
adaptable. Because the approach is tool-oriented, it provides a useful minimum set of
refactorings from which many OO refactorings can be assembled.

Defining New AOP-Specific Refactorings. A set of new, AOP-specific refactor-
ings must be described. There are many ways to discover such refactorings, the most
promising of which is by analysis of design evolution in long-lived software systems.
Unfortunately, long-lived systems programmed in aspect-oriented languages are rare or
nonexistent. Therefore, the new refactorings described in this thesis are derived from
comparisons of AOP and OO designs [HK02] and the author’s intuition. This approach
lends itself well to discovering fundamental refactorings, but not as well to more specific
higher-level refactorings. All of the refactorings are described with clear dependencies
on the analyses and transformations required to make them behavior-preserving.

1.3. ORGANIZATION OF THIS THESIS 3

1.3 Organization of this Thesis

The following two sections give a more extensive background on refactoring and aspect-
oriented programming, and this chapter concludes with a discussion of contributions of
this thesis.

Chapter 2, Requirements for Behavior Preservation, explains what is meant by
behavior preservation, and establishes a set of constraints that, if satisfied by a
particular program transformation, guarantee that it is a refactoring. It also de-
scribes characteristics of programs that make it hard or impossible to ascertain
that a refactoring is behavior-preserving.

Chapter 3, Low-Level Refactorings Reconsidered, reviews the set of low-level refac-
torings defined by Opdyke in [Opd92], giving new preconditions and transforma-
tion steps for each and providing brief arguments that each modified refactoring is
behavior-preserving in AOP based on the constraints in Chapter 2.

Chapter 4, Working with Patterns, describes methods for analyzing and transform-
ing patterns, AspectJ’s lowest-level ways of referring to program elements.

Chapter 5, New Fundamental Refactorings for AOP, defines about twenty AOP-
specific fundamental refactorings.

Chapter 6, High-Level AOP Refactorings, describes how the fundamental refac-
torings can be combined into more specialized refactorings, including three exam-
ple high-level refactorings designed to abstract crosscutting concerns using AOP
techniques.

Chapter 7, Conclusions, summarizes contributions and limitations of this thesis and
points to several areas for future work.

Appendix A reproduces a quick reference card for the AspectJ language.

Appendix B gives a grammar for features specific to the AspectJ language.

1.4 Refactoring

Refactoring is the process of changing the design of existing software—modifying the
structure of its code without affecting its external behavior. A variety of specific refac-
torings might be employed in this process. Each refactoring describes a disciplined way
to modify code in order to achieve a specific design change, without introducing bugs,
leaving the code in a less complete state, or otherwise tampering with the way the soft-
ware behaves. For example, one might refactor to replace direct uses of public fields
with accessors and modifiers, or create an abstract superclass to encapsulate common
behavior in similar classes.

4 CHAPTER 1. INTRODUCTION

The possibility of changing design after code has been written enables a more flexible
notion of software development, instead of the elusive waterfall approach where a clear
understanding of the problem at hand leads to an elegant design that is finally imple-
mented in code. In real systems, even if we could come up with the right design at first,
there is virtually always a need to change the software throughout its lifetime.

When it comes time to make a change, the obvious approach is to implement the new
concern in the way that demands minimal alterations of existing code. This reduces the
risk of breaking existing behavior in the process. Its long term consequences, however,
depend on how the minimal change fits into the system’s design: if the design has
anticipated the right kind of change, then it is simply a matter of filling in the detail
in the right place; the integrity of the design is just as strong as it was before the
implementation, and the change is localized and unpluggable. On the other hand, if the
new concern cannot be elegantly accommodated, the obvious implementation is likely to
be one that selectively compromises the design in many, scattered places. This makes
the new implementation hard to maintain; its parts may live anywhere in the code base
and depend on numerous implicit assumptions. When many of these changes get hacked
onto a software system, it becomes hard to trust that any single part can be understood
on its own, as a module. Consequently, the design begins to lose value, and the cost of
maintenance grows and grows.

With refactoring it is possible to avoid this downward spiral. When the design of
existing code does not accommodate needed changes, it can be reworked in-place so that
it will. The design can evolve along with the new requirements. Though the short-term
cost to implement a particular change will be higher than that of the simplest hack,
the long-term benefits may be so great that the added cost is justified. Advocates of
refactoring argue that it opens the door to disciplined, piecemeal growth of software
systems [Fow00].

Aside from preparing software for extensions, there are other motivations for refac-
toring. Opdyke [Opd92] describes the following:

Extracting a reusable component. Consider a business system that has been in
place for several years. It may become desirable to replace the underlying con-
trol of business operations with an industry-standard system when one is made
available, but to preserve the existing system’s user interface so that users need
not be retrained. In the existing system, user interface functions are interwoven
with other, obsolete functions. The software can be refactored so that the user
interface component can be extracted.

Improving consistency among components. Different components may be imple-
mented by different project team members. A pair of components initially thought
distinct may turn out to share some common substructure. To make these compo-
nents easier to understand and to improve the maintainability of the system, the
components can be refactored to make their common elements explicit.

1.4. REFACTORING)

1.4.1 The Discipline of Refactoring

Programmers have likely been applying ad hoc meaning-preserving program transforma-
tions since the advent of high-level languages, but refactoring was first studied formally in
the early 1990s [0J90, Gri91, Opd92, GN93]. Recently, refactoring has gained momen-
tum, partly because of its prominence in cutting-edge software development method-
ologies such as Extreme Programming [Bec99]. Several advances in refactoring have
included development of refactoring tools for specific languages; first Smalltalk [RBJ97]
and, more recently, Java, C++, and others [Fow02, Goo02].

William Opdyke’s PhD thesis [Opd92, 0J90], under the direction of Ralph Johnson,
was the first major written work using the term refactoring. He considered refactorings
for object-oriented software, identifying a set of refactorings applicable in that context.
For these refactorings, he described the design prerequisites and automatic program re-
structurings required to guarantee preservation of behavior. Though his experiments
were based on C++4, an important consequence of Opdyke’s work was the later devel-
opment of a refactoring tool for Smalltalk. This tool, the Refactoring Browser [RBJ97],
was also developed under the leadership of Ralph Johnson at the University of Illinois,
and was implemented by John Brant and Don Roberts.

Other significant early work by William Griswold explored a variety of refactorings
(though he did not use this term) and related transformations [Gri91, GN93]. Like
Opdyke, Griswold focused on separating the process of refactoring from other software
modifications, and described a set of automatable transformations in terms of their
requirements and effects. Griswold’s work, however, was primarily concerned with func-
tional and imperative programming, and included a prototype tool for restructuring
Scheme programs.

In recent times, the surging popularity of refactoring in industry has led to the pub-
lication in 2000 of a more practically-oriented book, by Martin Fowler [Fow00]. Fowler
presents a refactoring guide for professional programmers, including questions of how
refactoring figures into the software development process, along with an extensive cata-
log of object-oriented refactorings with examples in Java. It describes over 70 refactor-
ings, from very simple (such as rename method) to quite complex (such as tease apart
inheritancel).

Fowler’s book is a sign of booming interest in the techniques of refactoring. This
has been fueled especially by the rise of Agile Software Methodologies [BT01] such as
Extreme Programming (XP) [Bec99]. These methodologies emphasize an incremental
development process, with little up-front design and short or virtually continuous de-
velopment iterations. At each iteration, the software may not address the complete set
of requirements, but carries a subset or simplification of the requirements through the
development cycle, from design to release. Each iteration is expected to be designed to
appropriately suit the current set of features; as future iterations add new requirements,

LA single inheritance hierarchy doing two jobs at once invites code duplication and complicates ex-
tending the hierarchy. Because separate concerns have interwoven implementations, making one small
change may require a bunch of parallel changes. The purpose of tease apart inheritance is to create a
separate class hierarchy for each secondary job and delegate to it where appropriate.

6 CHAPTER 1. INTRODUCTION

the software is refactored to preserve an appropriate design. In this context, refactoring
is frequent and crucial. Historically, the concepts of refactoring may have inspired and
enabled agile methodologies: Kent Beck, creator of XP, worked extensively in Smalltalk
with the Smalltalk Refactoring Browser [RBJ97] for years before he described refactoring,
along with other development strategies, in a software development methodology.

1.4.2 The Rise of Refactoring Tools

When refactoring is done frequently, a tool that could automatically apply refactorings—
quickly and without making mistakes—could significantly reduce development time and
costs. The first tool designed to assist with refactorings on a large scale was the Smalltalk
Refactoring Browser [RBJ97]. It automates many refactorings including renaming vari-
ables, methods, and classes; extracting new variables, methods, and classes to encap-
sulate concerns in existing code; inlining methods and classes to remove unnecessary
abstraction; and moving components between classes and up or down the inheritance
hierarchy.

Because the Smalltalk Refactoring Browser was designed to “bring refactoring into
the mainstream of program development” [RBJ97], it models some important features
for refactoring tools. It is integrated with standard development tools, fast, and careful
to prompt the user for names when appropriate. In these ways, it achieves results that
can be tried and, if necessary, undone; and does not insert meaningless identifiers into
code.

Due to the dynamic type system of Smalltalk, some of the browser’s refactorings have
rather complex implementations. For example, in order to rename a method, each call
site must be modified to reference the new name. Of course, prior to the refactoring,
another type may have a method call of the same name; its calls should not be changed.
Unfortunately, because the type of an object often cannot be known statically, there
are cases where this refactoring cannot be automatically performed statically. Thus in
the Smalltalk Refactoring Browser, rename method is a dynamic refactoring: part of its
execution requires exercising the program with a test suite.

This exact issue does not occur in Java or other statically typed languages: many
refactorings can be accomplished safely with much simpler analyses. Though there may
be refactorings for statically typed languages that would require dynamic analysis, I am
not aware of any work toward identifying or automating such refactorings.

A number of tools support refactorings in Java, including specialized refactoring soft-
ware as well as general-purpose interactive development environments (IDEs). The IDEs
include commercial ones such as IntelliJ IDEA (http://www.intellij.com/idea/) and
the open-source Eclipse IDE (http://www.eclipse.org/). Dedicated tools include
Xrefactory (http://www.xref-tech.com/speller/), a high-performance code browser
and refactoring tool for Java and C++; JREFactory (http://jrefactory.sourceforge.net/)
and Transmogrify (http://transmogrify.sourceforge.net/) for Java, and others.
(Current lists are available at [Fow02] and [Goo02].)

While these tools vary considerably in their implementation and styles of usage, they
generally support the same kinds of refactorings:

1.4. REFACTORING 7

Rename: semantics-preserving renamings of variable, method, and class identifiers.

Move: relocate fields, methods, and classes up or down the class hierarchy or into other
classes and packages, fixing references as necessary.

Extraction: select a section of code to abstracted into a method or an expression to be
abstracted into a variable. The best example is Extract Method, which encapsulates
a code selection in a method declaration, determines which values must be passed
in as parameters, and searches the program for equivalent code to be replaced with
a method call.

Inlining: the opposite of extraction. Replaces references to method calls or variables
with an in-place procedure or expression.

1.4.3 A Refactoring Example

Fowler [Fow00, p.135] describes the refactoring Replace Method with Method Object,
designed to enable decomposition of a long method that depends on many local variables.
The goal is to turn the method into its own class, so that all the local variables become
fields of the new class?. Once this is done, the real benefits of decomposing the long
method can be achieved using the Fxtract Method refactoring inside of the new class.
Figure 1.1 shows example code before refactoring.

class Order...
double price(Vector extras) {
double basePrice = getQuantity() * myCost;
double extrasPrice = extras.size() * extrasCost;
double servicePrice = service.getPrice(yearsServiced) +
service.getPriceForExtras(extras.size());
double deliveryPrice = ... // and so on...

return basePrice + extrasPrice + servicePrice +
(isDelivered? deliveryPrice : 0);

Figure 1.1: A long method before the refactoring.

First we create a new class, named after the method. We give it fields for the source
object and each of the method’s local variables and parameters:

class PriceCalculator {
private final Order _order;
private Vector extras;

*The Method Object pattern is from [Bec97].

8 CHAPTER 1. INTRODUCTION

private double basePrice, extrasPrice, servicePrice, deliveryPrice;

}
To this we’ll add a constructor, taking the source object and the parameters:
PriceCalculator(Order o, Vector e) { _order = o; extras = e; }

Now we’ll add a compute () method to the new class, moving the body of the original
method over. In the process, we need to change references to members of the Order
object to go through _order:

double compute() {

basePrice = _order.getQuantity() * _order.myCost;

extrasPrice = extras.size() * _order.extrasCost;

servicePrice = _order.service.getPrice(_order.yearsServiced) +
_order.service.getPriceForExtras(extras.size());

deliveryPrice = ... // and so on...

return basePrice + extrasPrice + servicePrice +
(_order.isDelivered? deliveryPrice : 0);

¥

And finally, to invoke our new code, we’ll put the class declaration inside of the price ()
method, and have it simply construct a PriceCalculator and then delegate to its compute ()
method. The final code is shown in figure 1.2.

Analysis

Unlike many refactorings, all the changes that Replace Method with Method Object re-
quires are localized within the space of a single method, eliminating the need for a global
reference search—usually among the most compelling reasons for automated assistance.
However, this refactoring still exemplifies an opportunity for tool support. Its steps could
be fully automated based on the selected price() method:

1. Creating a new class. A class is created, inner to price(). It is given instance
variables for the object containing price(), that method’s parameters, and that
method’s local variables.

e The source object is declared final to enforce some preservation of semantics;
assigning to _order would be like assigning to this in the Order object, and
so should not be allowed.

e To keep this refactoring simple to complete, all locals are treated uniformly.
In later refactorings, some of the local variables that have become instance
variables may become localized.

2. Constructor creation. The new class’s constructor is a trivial one that assigns
the variables for the source object (Order) and the method parameters.

1.4. REFACTORING 9

3. Moving the method body. The body of the price() method is moved and
transformed into a new compute () method.

e As local variables have been replaced with instance variables, their declara-
tions in the method body must be removed. Other references to these variables
need not be changed.

e References to instance variables and method calls on the source object need
to be replaced with indirection through the _order field.

4. Change the original method to use the method object. Replace the orig-
inal method body with construction of the method object and delegation to its
compute () method.

Each of these steps can be fully automated, with the exception of naming the new class
and method. In addition to accelerating the refactoring process, tool support guarantees
that no mistakes will creep in, and that behavior is preserved—the latter is particularly

class Order...
double price(Vector extras) {
class PriceCalculator {
private final Order _order;
private Vector extras;
private double basePrice, extrasPrice, servicePrice, deliveryPrice;

PriceCalculator (Order order, Vector extras) { ... }

double compute() {

basePrice = _order.getQuantity() * _order.myCost;
extrasPrice = extras.size() * _extrasCost;
servicePrice = _order.service.getPrice(_order.yearsServiced) +

_order.service.getPriceForExtras(extras.size());
deliveryPrice = ... // and so on...

return basePrice + extrasPrice + servicePrice +
(_order.isDelivered? deliveryPrice : 0);

return new PriceCalculator(this, extras).compute();

}

Figure 1.2: The completed Method Object refactoring on the price() method.

10 CHAPTER 1. INTRODUCTION

easy in this case, where the interface of Order is unchanged as all refactoring occurs
within the price() method. Even barring mistakes, the application of this refactoring
may be tedious, discouraging its use. By making its application virtually effortless,
programmers may be more inclined to use this refactoring where appropriate.

1.5 Aspect-Oriented Programming

Aspect-Oriented Programming, or AOP, extends Object-Oriented Programming with
the concept of aspects, which modularize crosscutting concerns. Like a class, an aspect
is intended to capture a set of related program elements addressing a particular concern.
Unlike classes, however, aspects are intended to modularize crosscutting concerns—those
that inherently span the definitions of many classes. AOP techniques let the programmer
specify well-defined ways that aspect code blends with other program code. Depending
on the AOP mechanism in use, these effects may be static or dynamic, altering the
software’s structure or execution.

1.5.1 The Problem of Crosscutting Code

A primary goal of object-oriented programming is to enable programmers to design code
whose structure mirrors the real, live structure of the objects being modeled. This is
achieved by describing the states and operations that may apply to classes of objects.
But many software systems must address concerns that are not localized to a single class.
For example:

Error handling: many classes comprise a service, each implementing error handling/reporting
at relevant points in its operation. Even if these chunks of error-handling code are
initially implemented in a coordinated way, it will be difficult to understand or
change the error reporting behavior and structure, because it is intertwined in
unpredictable ways with code pertaining to the class’s primary functions.

Caching: because caching is a performance concern separate from functional concerns,
intertwining caching code with other code can complicate both. Additionally, while
it may be easier to achieve an optimal caching policy by taking into account a
variety of different classes of data objects, spreading this knowledge throughout
those classes may introduce couplings and interdependencies between functionally
unrelated classes.

Multi-object protocols: some protocols and design patterns, such as the Subject-
Observer pattern [GHJV95, pp. 293-303], assign roles to multiple objects. Each
object may need to implement new code that does not relate to its functional
purpose solely to participate in the protocol. Again, pure OO design forces inde-
pendent concerns to be bound together at design time.

These examples illustrate crosscutting concerns, and highlight the limitations of even
the best object-oriented designs in adequately modularizing these concerns. With pure

1.5. ASPECT-ORIENTED PROGRAMMING 11

OO approaches, the implementation parts of these concerns will be mixed in throughout
other code. Though inheritance or other techniques may mitigate these problems in
some cases, AOP seeks to directly model the crosscutting structure. Thus aspects are
comprised of code along with explicit specifications of where and how that code joins
with the rest of the program.

Examp.le . For a specific example, consider the case of function memoization®:

Memoization saving the results of a function in a table, so that if the function
is invoked repeatedly with the same arguments, the value is sim-
ply looked up instead of computed [Mic68]. This is a performance
enhancement that might be used in number-crunching systems.
Because memoization has no effect on how the function is actu-
ally computed, we’d like to keep the computation separate from
the memoization. But because memoization is a performance en-
hancement that must not be apparent to the function’s caller (un-
less they are keeping track of time), we cannot change the interface.
Ideally, we’d like to list which methods should be memoized, de-
scribe a generic memoization procedure, and have that procedure
executed around calls to those methods. This is the approach we
will pursue and refine in following examples. We’ll start with the
slow method defined below.

“T am indebted to Mark-Jason Dominus for first showing me the idea
of memoization during his talk “Iricks of the Perl Wizards” given for
the Cincinnati and Dayton, Ohio Perl Mongers group in 1999. His
technique, which I believe can legitimately be called aspect-oriented,
worked by redefining subroutines in strange ways (legal in Perl). See:
http://search.cpan.org/author/MJD/Memoize-1.01/Memoize.pm

public static int myFunction(int x) {
try { Thread.sleep(1500); } catch(InterruptedException e) { }
return x * 3;

1.5.2 Language Mechanisms for Capturing Crosscutting Concerns

Like OO, AOP techniques can be achieved with a variety of mechanisms (a list of
current software tools is at [Com02]). For AOP, these include preprocessors, class
loader/manglers, component frameworks [PSDF01], and programming languages. The
programming languages that provide the most robust AOP support each build on a pop-
ular OO or procedural language, currently including Java, C, C++4, Smalltalk, Python,
and Ruby. Of these languages, the most mature is AspectJ [KHH*01], an AOP extension
to Java.

12 CHAPTER 1. INTRODUCTION

This section describes the primary language mechanisms that AOP languages use
to capture and represent crosscutting concerns. Though the terminology comes from
AspectJ [Tea02b], analogous mechanisms exist in other AOP languages such as Hyper/J
[TOHJ99].

Static Introduction

In order to allow aspects to modify classes and their hierarchy, aspects may include
several forms of introduction, which declares new members on classes (inter-type decla-
ration) or alters inheritance relationships between classes. Introduction is based on the
notion of open classes, and includes addition of fields and methods and declaration of
superclasses® and implemented interfaces.

Inter-type declarations take hold at compile-time and can vary in visibility (e.g.
private to the aspect or publicly visible). The introduction mechanism is important to
AOP because it allows the many static parts of a crosscutting concern to be described in
one place, even when the declarations must apply to a variety of separate and unrelated
classes.

Examp.le . Since myFunction is static, we don’t need to introduce its memo

Memoization ¢able into its containing class—we’ll just keep it private to the
Memoization aspect. A more flexible implementation might call for
introducing fields to keep memoization tables for specific objects.

Affecting Program Behavior Dynamically

In addition to static introduction, aspects can affect the execution of the program dy-
namically. The language’s joinpoint model specifies which joinpoints—well-defined points
in the program’s execution—can be described*. Based on joinpoint specifications, code
contained in an aspect can be invoked during execution and affect behavior at runtime.
The joinpoint model may vary considerably between languages; it could contain only
very simple program events or allow elaborate (and potentially confusing) joinpoints
based on less stable information such as variable names and line numbers. The most
stable but expressive joinpoints are parameterized with class, method, or field names or
name patterns, and include:

e method calls,
e method executions (when the actual method body is executed),

e object construction,

3Introduced inheritance declarations under languages supporting only single inheritance will only be
legal if the newly declared superclass is a subclass of the original superclass.

1A joinpoint, like a break point, identifies a specific point in execution; but unlike break points used
to stop a program during debugging, joinpoints invoke special code that can alter execution in a number
of ways.

1.5. ASPECT-ORIENTED PROGRAMMING 13

e class (static) initialization,
e reading and assignment of data in fields, and
e handling or throwing exceptions.

The code that specifies how program behavior is to be affected at runtime is advice.
Advice has a great deal of power to inspect program state at runtime using reflection,
and to manipulate state and execution paths. Advice might take hold

before a joinpoint: advice can view and modify input values and other state before
the joinpoint is entered.

after a joinpoint: advice can view and modify return values and other state after a
joinpoint has finished. There are also special cases of after advice for methods
returning normally or exiting by throwing an exception.

around advice replaces the joinpoint. It can view and modify input, invoke the actual
joinpoint using a special keyword, and view and modify its results. It is the only
kind of advice that must declare a return type, and this must be a subtype of the
joinpoint’s return type. For example, around advice on a method call might look at
the input parameters, and only delegate that information to the advised method
if the parameters are within reasonable bounds. If the inputs are found bogus,
it might trigger some recovery behavior and not call the method at all, perhaps
returning an error value or not returning at all but throwing an exception.

Around advice only makes sense for joinpoints that evaluate to a value® (including
a void value); the advice code is responsible for returning that value (possibly by
invoking the actual code).

Examp.le . We’ll use around advice to capture calls to the function we want
Memoization memoized, look up their parameters in a table, and only delegate
to the function when those parameters are not found.

1.5.3 AspectJ

AspectJ [Tea02b] is an extension of the Java programming language [GJSB00] with
Aspect-Oriented additions. It is developed, freely distributed, and supported by re-
searchers at the Xerox Palo Alto Research Center as a real-world test bed for Aspect-
Oriented Programming. Because its developers want to test AspectJ on real projects in
industry, it benefits from a stable core of support, including the considerable advantages

5This includes field assignments and accesses; in assignment, the new value is like a parameter to an
assignment method, and the value of the assignment expression or field access is like the return value of
a method.

14 CHAPTER 1. INTRODUCTION

of a mature, well-performing compiler; support in a number of interactive development
environments; and active mailing lists for user support.

Any Java program is a valid AspectJ program. In addition, AspectJ programs may
include structures called aspects. An aspect can include methods and field declarations
like a class, but can also include pointcuts, which are sets of joinpoints; advice, which de-
scribes ways to alter program execution at joinpoints; and introduction, which transforms
the static structure of a program.

Joinpoints and Pointcuts

AspectJ provides about 20 primitive pointcuts which select joinpoints based on names
and properties. Pointcuts may be combined using set operators such as

a && b all joinpoints in both a and b
a || b any joinpoint in a or b
a && !b any joinpoint in a, except those in b

The primitive pointcuts are parameterized by patterns that pick out sets of methods,

constructors, types, or fields. In these patterns, * represents any sequence of characters;
in an identifier represents any sequence of characters starting and ending with “.’;

and .. in a series of parameters represents any number of parameters. For example,

execution(org.bar..* Foo.*(..) throws My*Exception)

matches the execution of any method that throws MyFirstException, MySecondExcep-
tion, etc. The method may have any number of arguments, but must be in a class Foo,
and must have a return type that is in some package whose name starts with “org.bar.”.
The following examples (mostly adapted from the AspectJ Quick Reference [Tea03])
demonstrate the basic pointcuts:

call(void Foo.m(int)): a call to the method with signature void m(int) in Foo
execution(!public Foo.new(..)): the execution of any non-public constructor of Foo

initialization(Foo.new(int)): the initialization of any Foo object that is constructed
with Foo(int)

staticinitialization(Foo): when the type Foo is initialized, after loading
get (int Point.x): when the integer field x in the Point class is read
set(!private * Point.*): when any non-private field in the Point class is assigned

handler (I0Exception+): when an IOException or its subtype is handled with a catch
block (without the +, type patterns match only an exact type)

The following primitive pointcuts can also be used on their own, but are commonly
combined with the basic pointcuts in order to narrow down the range of included join-
points. For example, a call-tracing aspect might include

1.5. ASPECT-ORIENTED PROGRAMMING 15

call(x *(..)) && !within(Tracing)

which matches every method call except those within the Tracing aspect itself. The
general forms® are:

within(TypePattern): any joinpoint whose associated code is defined in any type match-
ing the pattern

withincode (MethodPattern): any joinpoint whose associated code is defined in a match-
ing method

withincode (ConstructorPattern): any joinpoint whose associated code is defined in a
matching constructor

There are also primitive pointcuts that are parameterized by other pointcuts. These
select points based on the flow of control in the parameter’s joinpoints. For example:

cflow(call(void Figure.move())): any joinpoint in the control flow of each call to
void Figure.move(), including the call itself.

cflowbelow(call(void Figure.move())): any joinpoint in the control flow of each
call to void Figure.move (), not including the call itself.

Finally, a few pointcuts express additional conditions:
if (Tracing.isEnabled()): any joinpoint where Tracing.isEnabled() is true. The
boolean expression used can only access static members, variables bound in the

same pointcut, and the reflective thisJoinPoint object.

this(Point || Line): any joinpoint where the currently executing object is an in-
stance of Point or Line

target(java.io.InputPort): any joinpoint where the target object is an instance
of java.io.InputPort

args(Point, int): any joinpoint where there are two arguments, the first a Point
and the second an int.

args(*, int): any joinpoint where there are two arguments, the second an int.

args(float, .., float): any joinpoint where there are at least two arguments, the
first and last of which are floats.

SA grammar for the patterns used to parameterize these pointcuts is given in Appendix B, p. 77.

16 CHAPTER 1. INTRODUCTION

Examp.le . Since our advice must apply around each call to myFunction, we

Memoization il use the following pointcut, named memoizedFunction:
pointcut memoizedFunction(int x):
call(static int MyClass.myFunction(int)) && args(x);
This is an example of a named, parameterized pointcut: when
the pointcut is used, a variable x must be passed in and its value
will be bound to the int argument of myFunction. We will later
reference this from within the advice code in order to look up or
enter values in our memo table.

Advice

AspectJ allows advice to take hold before, after, and around joinpoints. Advice dec-
larations can include formal parameters, which are passed to pointcuts and bound to
values in joinpoints. The body of each advice declaration is executed at the appropriate
time relative to each joinpoint. Although not all advice makes sense for every pointcut,
current AspectJ syntax allows all combinations; in some cases, around advice simply
behaves like before and/or after advice, depending on when and if the original joinpoint
is invoked.

before(): get(int Foo.y) {...}: runs before reading the integer field Foo.y
after() returning: pointcut {...}: runs after the joinpoint returns normally

after() returning(int x): pointcut {...} runs after the joinpoint returns. The
joinpoint must return an integer value. The value is bound to x in the body.

after() throwing: pointcut {...}: runs after the joinpoint throws an exception

after() throwing(MyException e): pointcut {...}: runs after the joinpoint throws
MyException; the exception is bound to e in the body.

after(): pointcut {...}: runs after the pointcut, regardless of how it returned

before(int i): set(int Point.x) && args(i) {...}: runs before the field x in
any Point is assigned. The value to be assigned is named i in the body.

before(Object o): call(void Vector.add(Object)) && args(o) {...}: runsbe-
fore calls to Vector’s add method. The object to be added is named o in the body.

int around(): call(int Point.getX()) {...}: runs instead of calls to Point’s int
getX () method. The getX() may be invoked in the body using proceed (), which
has the same signature as the around advice. Around advice may also declare
thrown exceptions; these must not break Java’s static type safety rules.

1.5. ASPECT-ORIENTED PROGRAMMING 17

Examp.le . We’ll advise around our memoizedFunction pointcut and look up
Memoization tpe argument in our memo table (the memo object here) to check
whether myFunction really needs to run:
int around(int arg): memoizedFunction(arg) {
if (memo.hasValueFor(arg)) {
return memo.getValueFor (arg) ;
} else {
int result = proceed(arg);
memo .putValue(arg, result);
return result;

}

Weaving® an aspect containing the memoizedFunction pointcut
and this advice together with the class containing myFunction will
result in a program with memoization behavior on myFunction.

Full code of the memoization aspect follows.

“The process of activating aspects into other code is called weaving. Cur-
rently, the AspectJ compiler does all weaving at compile-time on source code
or existing, unwoven class files; future releases of the AspectJ tools are planned
to support weaving into already-compiled bytecode and weaving at class-load
time.

public aspect MyFunctionMemoization {

protected MemoTable memo = new MemoTable();

// MemoTable provides:

// boolean hasValueFor(int argument), true iff argument is in table

// int getValueFor(int argument), gets result value from table

// void putValue(int argument, int result), places arg/result into table

protected pointcut memoizedFunction(int x):
call(static int MyClass.myFunction(int)) && args(x);

int around(int arg): memoizedFunction(arg) {
if (memo.hasValueFor(arg)) {
return memo.getValueFor (arg);
} else {
result = proceed(arg);
memo .putValue(arg, result);
return result;

18 CHAPTER 1. INTRODUCTION

Reflection at Joinpoints

The AspectJ API provides a reflective form, accessible within advice bodies through
the special variable thisJoinPoint of type org.aspectj.lang.JoinPoint [Tea(2a].
This form provides reflective access to the program state at a joinpoint (the point that
triggered the advice) as well as static information about the advice:

e the set of arguments (parameters to a method, new value for an assignment, etc.)
at the joinpoint

e joinpoint kind (method call, variable read, etc.)

e signature at the joinpoint (the method, field, or type signature), including the
declaring type, modifiers, and name.

e location in source code of the joinpoint
e the object currently executing (same as this() pointcut)

e the target object of the current code (same as target () pointcut)

Example The primary use of these reflection mechanisms is for tracing and

Logging logging applications. The following aspect (from [Tea02a]) pro-
vides basic logging facilities for all public methods in any class in
any package whose name begins with “com.bigboxco.”.

aspect Logging {
before(): within(com.bigboxco..*) && execution(public * *(..)) {

System.err.println("entering: " + thisJoinPoint);
System.err.println(" w/args: " + thisJoinPoint.getArgs());
System.err.println(" at: " + thisJoinPoint.getSourcelLocation());

}
}

Inter-type member declarations

AspectdJ allows aspects to introduce members to other types. These declarations are
identical in form to declarations in those types themselves, except that the member’s
name is prefaced by a type pattern. The type pattern specifies into which types the
member will be introduced. Within the body of introduced methods and constructors,
this refers to the enclosing object, not to the aspect where the member is declared.

For example, the following declaration introduces a clone() method to the Point
class:

1.5. ASPECT-ORIENTED PROGRAMMING 19

public Object Point.clone() { return super.clone(); }

Fields may also be introduced to other types in the same way.

Creating inheritance relationships

Using the declare parents construct, aspects can declare a superclass and implemented
interfaces on classes. The statement

declare parents: C extends D;

declares that the superclass of C is D. This is only legal if D is declared to extend the
original superclass of C and is not a subclass of C. Interfaces may be introduced using
similar syntax, such as

declare parents: C implements I,J;

which declares that class C implements interfaces I and J.

Special aspect declarations

In addition to static introduction of members and inheritance relationships, AspectdJ
allows three special declared forms: compile-time warnings and errors, and wrapping
(“softening”) of exceptions. Compile-time warnings or errors associate a pointcut with
an error or warning condition and message: the compiler will fail or issue a warning if
any joinpoint in the given pointcut may be reached. For example,

declare error: call(Singleton.new(..))
&& 'withincode(Singleton Singleton.getInstance()): "bad construction";

will cause compilation to fail with the message bad construction if any calls to any con-
structor of the class Singleton are found outside of its getInstance () method. Warning
declarations have the same syntax but use the keyword warning instead of error.

Additionally, an aspect may specify that a particular kind of exception, if thrown at
a joinpoint, should bypass Java’s usual static exception checking and be thrown as an
org.aspectj.lang.SoftException, which is a RuntimeException and thus does not
need to be declared. For example, the declaration

declare soft: Exception: execution(void main(String[] args));
would have a similar effect to the advice

void around() execution(void main(String[] args)) {
try { proceed(); }
catch(Exception e) {
throw new org.aspectj.lang.SoftException(e);

}
}

20 CHAPTER 1. INTRODUCTION

except that declare soft also affects static exception checking.

Example The aspect below (from [Tea02b]), which makes the Point class
Cloneable cloneable, demonstrates static crosscutting in AspectJ.

aspect CloneablePoint {
declare parents: Point implements Cloneable;

declare soft: CloneNotSupportedException: execution(Object Point.clone());

public Object Point.clone() { return super.clone(); }

}
The aspect CloneablePoint does three things:
1. declares that the Point class implements Cloneable,

2. declares that the clone() method in Point should have its checked exceptions
converted to unchecked exceptions, and

3. adds a method that overrides the clone() method inherited by Point.

1.6 Contributions of this Thesis

1.6.1 Updates of Object-Oriented Refactorings

In order to preserve meaning when transforming a program that contains aspect code,
it may be necessary to modify references within aspect code that refer to other parts of
the program. This is conceptually similar to the reference changes that are required in
refactoring a plain OO program but involves some unique challenges. These stem from
the great variety of ways that type patterns or pointcuts can refer to program joinpoints;
because many different pointcut expressions can select the same set of joinpoints in a
given program, it is impossible to predict exactly what references will look like. For
example, if Foo is the only class in a program that contains a setX(int) method, and
that method is the only method in the program that takes one integer parameter, the
following pointcuts are all equivalent:

call(Foo.setX(int))

call(Foo.set*(..)) // assumes setX is the only set* method in Foo

call(*.setX(int)) // assumes no other class has a setX(int) method
call(*(int)) // assumes no other class has a method taking an int
call(*.setX(..)) // assumes no other class has any method named setX

1.6. CONTRIBUTIONS OF THIS THESIS 21

However, these pointcuts would not be equivalent after some simple OO refactorings,
such as renaming a method. The first pointcut would become empty if the name of setX
were changed, and the last pointcut would grow if a method elsewhere were renamed to
setX.

As noted in the comments above, these equivalent pointcuts depend on increasingly
unstable assumptions about overall program structure—but each expression is allowed
by the language, and legitimate cases for using expressions like these can be made.
Therefore, each pointcut or type pattern that may reference elements affected by a
refactoring must be interpreted to determine if changes to it are required. Because OO
refactorings can both add and remove joinpoints from a particular pointcut expression
or type pattern, changes to a pattern or pointcut depend both on the way it is expressed
and the refactoring in use.

This thesis describes how pointcuts and type patterns in the AspectJ language can
reference joinpoints in the program, and how these references need to be changed in order
to preserve behavior when OO refactorings are applied. The OO refactorings considered
are the set of about 20 fundamental refactorings supplied by Opdyke [Opd92]; many
complex refactorings can be composed from these.

1.6.2 New AOP Refactorings

Perhaps the greatest opportunity in combining AOP and refactoring lies in using refac-
toring to improve a design by employing AOP techniques. This is the most novel and
ambitious goal of this thesis: it encapsulates envisioning clear design goals and fashion-
ing particular refactoring techniques in a field with weak consensus on design and little
practical experience. Nevertheless, the refactorings are intended to be of more than the-
oretical interest and an important area of future work will be to test them in the growing
AOP software engineering practice.

The distinguishing goal of AOP is to enable the encapsulation of crosscutting con-
cerns. Hence the refactorings introduced in this thesis have as their goal the extraction
and encapsulation of crosscutting concerns. In particular, the refactorings are intended
to help a programmer improve the structure of crosscutting concerns using AOP tech-
niques. This is a complex aim, but can be reduced into some sub-goals:

e extracting before/around/after advice (for a given pointcut)

For a pointcut either given explicitly or extrapolated from code selections, it may be
desirable to encapsulate behavior occurring before, around, or after all joinpoints in
that pointcut. For example, an authorization check may precede all data displays;
this could be abstracted into before call advice.

22 CHAPTER 1. INTRODUCTION

Example Refactoring: Before

user.requireSecurity(UFOinfo.securityLevel());
user.send (UF0info) ;

user.requireSecurity(budgetDetails.securityLevel());
user.send(budgetDetails) ;

After

before(User u, Secureltem s):
call(User.send(Secureltem)) && target(u) && args(s)
{
u.requireSecurity(s.securityLevel());

}
user.send (UF0info) ;

user.send (budgetDetails) ;

e moving code between aspects and other program components

Because aspects can introduce methods, fields, and inheritance relationships to
classes or interfaces in a program, it is possible to refactor a program by moving
these declarations into or out of aspects.

— extracting disjoint state into static introduction

A special case of moving code, where some simple analysis can identify disjoint
parts of a class such as a set of methods and fields not referenced by other parts
of the class. These methods and fields could be moved into a new aspect and
their declarations changed so they are statically introduced into the class. One
example would be to extract methods associated with a particular interface
into an aspect:

Example Refactoring: Before

interface SecureDocument {
static final int OBVIOUS = O, TOP_SECRET = 1;
public int getSecretLevel();

}

class WarPlan implements SecureDocument {
public int getSecretLevel() { return OBVIOUS; }
public String getData();

1.6. CONTRIBUTIONS OF THIS THESIS 23

After

interface SecureDocument {
static final int OBVIOUS = O, TOP_SECRET = 1;
public int getSecretLevel();

}

aspect WarPlanSecrecy {
declare parents: WarPlan implements SecureDocument;
public int WarPlan.getSecretLevel() { return OBVIOUS; }
}

class WarPlan {
public String getData();

}
— extracting repeated code (across inheritance trees) into static introduction

This is similar in form to the disjoint state extraction, but is based on a
different kind of analysis. A set of classes (possibly within a certain inheritance
pattern) can be searched for equivalent code declarations, which can be moved
into an aspect and declared with static introduction. For example, the ability
to add comments to nodes in a program’s syntax tree is disjoint from the
other program element properties that a node encapsulates.

Example Refactoring: Before

class MethodDeclaration {
MethodBody getBody() { ... }
String getName() { ... }

protected DocComment dc;

void setDocComment(..) { ... }

DocComment getDocComment() { ... }
}

class VariableDeclaration {
Type getType() { ... %}
String getName() { ... }

protected DocComment dc;
void setDocComment(..) { ... }
DocComment getDocComment() { ... }

}

24 CHAPTER 1. INTRODUCTION

After

class MethodDeclaration {
MethodBody getBody() { ... }
String getName() { ... }

class VariableDeclaration {

Type getType() { ... %}
String getName() { ... }

aspect CommentHandling {
protected interface CommentHandler { }
declare parents: (MethodDeclaration | VariableDeclaration)
implements CommentHandler;
protected DocComment CommentHandler.dc;
void CommentHandler.setDocComment(..) { ... %}
DocComment CommentHandler.getDocComment() { ... }

¥

These examples have demonstrated high-level refactorings. These and others are
described in Chapter 6.

1.6.3 New Fundamental Refactorings

Based on observations about larger goals in AOP refactoring, this thesis describes re-
quirements for the execution of several AOP refactorings. These refactorings are pre-
sented in terms of a new set of fundamental refactorings; the high-level refactorings are
expressed in terms of these and the updated fundamental OO refactorings. The new
fundamental refactorings are described in detail, including limitations on when they can
be applied statically.

Chapter 2

Requirements for Behavior
Preservation

set of rules designed to constrain program transformations to preserve program

behavior. These constraints fall into three categories: programming language
requirements, program properties that must be preserved, and equivalence of semantics.
First, the constraints used in OO behavior preservation arguments by Opdyke [Opd92]
are reviewed and edited to accommodate a transition from C++ to Java. Then new
constraints are defined that will form the basis for behavior preservation arguments in
aspect-oriented refactorings.

R efactorings must preserve the behavior of a program. This chapter describes a

2.1 Behavior Preservation

Of the many ways we can imagine to transform a program, there are quite a few we
might call behavior preserving. These vary quite a bit in their formality, complexity, and
scope: on one end are changes such as those made by optimizing compilers, like constant
folding and dead code elimination. These well-defined transformations apply in specific
situations according to strict prerequisites. On the other end are changes made almost
exclusively by people, like replacing a certain data structure or algorithm with a more
efficient one. The outside program will behave identically as long as the data structure
or algorithm works equivalently, but it takes an informal, expert judgment to recognize
this equivalence.

The refactorings presented in this thesis fall closer to compile-time optimizations
because they are presented formally based on decidable prerequisites. Refactorings,
however, are designed with a broader goal: to assist the programmer in achieving all
kinds of design improvements. Many desired design improvements—such as substituting
an algorithm—might not be achievable purely by iterative application of these refactor-

25

26 CHAPTER 2. REQUIREMENTS FOR BEHAVIOR PRESERVATION

ings. Still, known refactorings can often assist in much of the process. The refactoring
descriptions presented here have the following characteristics:

1. Each refactoring describes a kind of change that is generally useful in
the development of object-oriented and aspect-oriented software. The
changes a refactoring entails are explained in terms of common, straightforward
program alterations or more complex ones that are defined in this thesis.

2. The preconditions of each refactoring are decidable by static analysis,
at least conservatively (i.e., to the point of avoiding false positives). For exam-
ple, suppose some class X contains a method foo() and we want to know if an
overriding method foo () in a subclass Y of X is ever called. Even if no variable or
expression that has static type Y has the method foo () called on it, it is possible
that an object of type Y is substituted at runtime and the method is called on
that—we can’t always know for sure because of dynamic dispatch. But often we
can find that foo () is never called on any value that could possibly have type Y,
and infer the precondition based on that.

3. Each refactoring is argued to be behavior preserving by showing that
it satisfies certain conservative constraints on program transformations
that imply behavior preservation. Establishing constraints that are flexible
enough to permit interesting changes, but simple enough to actually satisfy, is the
primary goal of this chapter.

2.1.1 Assumptions and Limitations

Several important assumptions are made in the statements of preconditions, transfor-
mations, and behavior preservation arguments presented later in this thesis. The first
assumption is that any program we wish to refactor is syntactically and semantically
valid—it compiles. This assumption simplifies the preconditions each refactoring re-
quires. Though a particular error that causes a program to fail compilation may not be
pertinent to a given refactoring, questions of when and how these interdependencies can
be determined is outside the scope of this thesis.

Another assumption that is required to properly execute many of the analyses and
transformations is that we have access to the entire program. That is, we assume we
can read and modify all the relevant code, and we have no responsibility to preserve the
behavior of anything besides our program’s main method!. In a large application we
might need to analyze and alter hundreds of classes if a commonly used class’s name is
changed, so we assume access to all of these.

This assumption is most limiting when refactoring a library module. Because a library
is committed to supporting a certain interface, refactorings that break that interface
ought not be allowed, because this would risk changing the behavior of some client code.
To avoid this challenge, we assume that there is no client code outside our view.

!Though multiple classes involved in a program may have main methods, we assume in this thesis
that a program’s behavior is determined by a single invoked main method.

2.2. BEHAVIOR PRESERVATION CONSTRAINTS FOR REFACTORING 27

Finally, a significant limitation on where the refactorings described in this thesis are
valid is imposed by reflection. Like other program constructs, uses of reflection may
form dependencies on structures that our refactorings are designed to change. However,
because these dependencies are expressed in dynamic values rather than in static code,
the details of these dependencies are hard or impossible to determine statically. For
instance, if a specific error handler class is specified in a program’s configuration file
and dynamically instantiated based on its name, renaming that class would cause the
program to fail when attempting to load the class under its old name.

2.2 Behavior Preservation Constraints for Refactoring

Our first assumption about a program we want to refactor is that it compiles. A program
that does not compile can hardly be thought equivalent to one that does. Thus we reach
a first constraint on refactoring:

e In executing a refactoring, we must not transform the program into a state that is
forbidden by the programming language.

We might approach the task of satisfying this constraint by being careful about what
specific changes are allowed. While many such pitfalls are easy to avoid at each step
of refactoring, others—such as subtype cycles—might require explicit checks. (Specific
constraints that address these issues are described in section 2.2.1.)

A change that preserves linguistic validity, however, is not always a refactoring. There
are in fact many such transformations that do change the behavior of a program—without
them software development would be impossible! But even when we limit our transfor-
mations to those in the spirit of refactoring, there may be errors a compiler will not
catch. For example, consider a renaming of the method £2() to £1() in a class B, shown
in Figure 2.1. Assuming A.f1() and the original B.£2() behave differently, this ‘refac-

Erroneous Refactoring: Before After
class A { class A {
void f1(int x) { ... } void f1(int x) { ... }
} }
class B extends A { class B extends A {
void f2(int x) { ... } void f1(int x) { ... }
void main(int x) { f1(x) ... } void main(int x) { f1(x) ... }
} }

Figure 2.1: Renaming a method in class B: £2() — £10)

toring’ has failed to preserve meaning because the new name, £1, overrides a declaration
previously used by the main() method. One rule that would have prevented the in-
correct application of this refactoring is that a refactoring should not cause previously

28 CHAPTER 2. REQUIREMENTS FOR BEHAVIOR PRESERVATION

visible inherited members to be overridden. The following sections describe more of these
rules, which will form the basis of our behavior-preservation arguments.

2.2.1 Language Requirements

The following constraints are programming language rules commonly enforced by a com-
piler. Since any refactoring must transform a valid (compiling) program into another
valid program, a refactoring cannot violate these properties. While there are many
language constraints a refactoring must observe, the ones listed below typically require
explicit checks before refactoring because they are easily violated by improper applica-
tion of basic refactoring steps such as changing types and renaming or moving program
elements.

L1. Each class or aspect must have one direct superclass or superaspect that is not its
direct or indirect subclass or subaspect.

L2. Each type (class, aspect, or interface) must have a unique name.
L3. Each variable must have a unique name in its scope.

L4. Each method in a type must have a unique signature.

L5. The program must be type safe.

L6. Inherited fields may not be overridden.

L7. Rules for extends and implements:

(a) An interface can only extend other interfaces. An interface cannot implement
another interface.

(b) A class can only extend another class.
(c) An aspect can only extend another aspect or a class.

(d) A class or an aspect can only implement interfaces.

L8. If two methods overload a certain method signature, one’s signature must be (un-
ambiguously) more precise than the other’s.

2.2.2 Preserving Inheritance Properties

The following constraints require that as a program is refactored, certain inheritance
relationships and requirements are maintained. These are conservative constraints; there
are ways we could violate them in the course of a legitimate refactoring. But for our
purposes, they provides a good compromise, allowing us to incorporate a variety of useful
changes into our refactorings while limiting the potentially complex consequences of a
refactoring throughout an inheritance hierarchy.

2.2. BEHAVIOR PRESERVATION CONSTRAINTS FOR REFACTORING 29

I1. If a method that is inherited (including abstract methods in interfaces) is changed,
those changes to it must be compensated for in subtypes.

An inherited method can only be overridden when the overriding method’s sig-
nature is compatible with its own. We require that a refactoring preserve these
kinds of overriding relationships. Thus, when applying a refactoring that changes
a method’s signature, it is necessary to correspondingly change the signatures of
methods in subtypes of the containing type.

(A similar constraint would apply to fields, except that the Java language does not
permit overriding of inherited fields.)

12. A class or aspect that implements any interfaces or abstract classes should continue
to satisfy the requirements imposed by its interfaces or abstract superclasses after
refactoring.

2.2.3 Semantic Equivalence

Each refactoring alters a part of the program but preserves the way that part behaves,
at runtime, with respect to some external interface. For example, consider applying a
refactoring that inlines a method call within an existing method. The existing method
has the same signature and computes the same values as before the refactoring, so that
method’s behavior is preserved. From this we can derive an intuitive model for whole-
program behavior preservation: we simply apply this requirement to a program’s main
method. Thus, if we consider our program as purely a function, then any change that
does not change the main function’s mapping from input to output values is a refactoring.

Unfortunately, this model can only offer an intuitive explanation for refactoring in
general. Because the question of whether a change will alter the function that a program
computes is undecidable, the question of whether a given change is behavior-preserving is
also undecidable. However, specific refactorings can be argued to be behavior-preserving
in terms specific to their task. From these fundamental refactorings we can assemble
more sophisticated high-level refactorings.

Opdyke [Opd92] offers the metaphor of a circle delimiting the domain of each refac-
toring. There is some circle we can draw around part or all of the program, within which
we can make changes provided that at the end, things outside that circle can interact
with it in the same ways and to the same ends as they did before the changes. The
circle’s size and location vary depending on the refactoring; the circle may include one
method, as above, or much of a program, such as if a frequently referenced variable is
renamed.

This constraint permits several useful changes:

1. expressions can be simplified

Since an expression is used to compute a value, an equal expression (such as a
simplification) can replace it without changing program behavior.

2. dead code can be removed

30

CHAPTER 2. REQUIREMENTS FOR BEHAVIOR PRESERVATION

Because unreachable code does not have any effect on a program’s execution, it
can be removed without changing behavior.

. conditionals can be simplified based on invariant conditions

If we know that a certain condition is guaranteed to hold at every evaluation of
a conditional expression, that expression can be simplified based on the invariant
condition.

. unreferenced variables, methods, and classes can be added or removed

As with dead code, variables, methods, and classes that are never referenced in a
program’s execution do not affect behavior. Note that this allows several chunks of
code that reference each other to be removed all at once, as long as none of them
are referenced from the parts of the program that actually run (i.e., are reachable
from the program’s main method, which is always assumed to be referenced).

. a variable’s type can be changed, as long as each operation referenced on the

variable is defined equivalently for its new type, and all assignments involving that
variable remain type safe

For example, depending on the interface used on a given variable, it may be possible
to change its declaration to use a subtype or supertype. If the set of operations
invoked on the variable are all inherited from the original type in a subtype, the
declaration may be changed to use that subtype instead. Similarly, if all of the
invoked operations are inherited from the supertype, we can generalize to that
supertype without changing program behavior.

Other changes may be possible in some cases, such as when one type delegates to
another for a set of operations. But the cases of type substitutability that we can
detect automatically are limited.

. references to a field or method defined in one class can be replaced with references

to other fields or methods that are equivalently defined

If two variables are known to refer to the same object (decidable in limited cases),
or if two methods have equivalent bodies (equivalent code and variable references),
references to one can be replaced with references to the other.

Many of these changes are commonly made automatically by optimizing compilers.

While a compiler optimization, like a refactoring, is a static program transformation, its
motivation is entirely different. In fact, for every change allowed by the constraint of
semantic equivalence, its inverse must also be allowed. For example, an important refac-
toring is create empty class. This is a useful step in evolving a design, but considered in
isolation is just new dead code—a change an optimizing compiler ought never introduce.

2.3. PROPERTIES OF AOP BEHAVIOR PRESERVATION 31

2.3 Properties of AOP behavior preservation

With aspect-oriented constructs, program elements declared outside a class can affect its
structure and execution. Thus when aspects are present in a program, our refactorings
must preserve these AOP semantics in ways analogous to the preserved OO semantics.

2.3.1 Language Requirements

The first consequence of allowing AOP constructs is that our language requirements
are extended. The three main AOP features—inter-type member declaration, declara-
tion of new inheritance relationships, and advice—each have several effects on language
requirements.

Inter-type member declarations, which can function exactly like local declarations in
a target type, can be declared in any aspect. This affects the requirements that members
of a class have unique names and signatures, as both introduced and local declarations
need to be checked for conflicts.

Aspects can also declare new inheritance relationships by declaring a class to im-
plement an interface or by assigning it a new superclass. (The new superclass must be
a subclass of the original superclass.) These declarations must be taken into account
when changing inheritance relationships in a refactoring, as the first language require-
ment (that each class must have one direct superclass that is not its subclass) may be
violated. For example, a class’s supertype could be changed in a way that conflicts with
an introduced supertype.

2.3.2 Crosscutting Structure and Semantic Equivalence

A primary new feature of aspect-oriented programs is crosscutting structure. This poses
a special challenge in refactoring, because to preserve semantic equivalence, crosscut-
ting structure must apply at semantically equivalent points before and after refactoring.
AspectJ programs implement crosscutting structure using two mechanisms: inter-type
declarations and advice. While these mechanisms differ substantially, they do share some
common ways of referring to other parts of a program.

Inter-type declarations, which include introduction and the declare parents,
warning, error, and soft constructs, are features that alter a program’s static structure
based on target types that are either explicitly named or that match a given type pattern.
Therefore, in carrying out a refactoring we must ensure that the targets and effects of
inter-type declarations after refactoring are semantically equivalent to their targets and
effects before refactoring. Additionally, introduced methods contain code bodies. This
code, if it is itself reachable, can refer to program parts that might not be referenced
elsewhere; thus it must be considered in analyses checking for dead or unreferenced code.

Adpvice is based on pointcuts, which are sets of joinpoints—well-defined events in a
program’s execution. Some pointcuts, such as call, get, and set, are statically deter-
minable: given full source code, we can identify exactly where all appropriate method
calls and field accesses occur. This can be used to efficiently instrument advice when

32 CHAPTER 2. REQUIREMENTS FOR BEHAVIOR PRESERVATION

aspects are woven into classes statically. Other pointcuts, however, cannot generally be
determined statically. These include cflow, cflowbelow, if, and some cases of this,
target, and args. In a refactoring we’d like to make sure each pointcut is left with
either the same joinpoints or semantically equivalent joinpoints to those it contained
before the refactoring. None should be added and none removed. In some cases, we will
argue that a refactoring is meaning-preserving with respect to advice by showing that
the meanings of pointcuts are preserved.

Another possibility, however, is to present the argument in terms of the patterns
that parameterize the pointcut itself: if the patterns match semantically equivalent pro-
gram elements, then the pointcut will match semantically equivalent joinpoints. This is
a stronger requirement than simply that the pointcut contain an equivalent set of join-
points, because while individual patterns may each match many elements, they could
parameterize a pointcut that is small or empty. For instance, the pointcut

call(public int Foo.getLength())
implies the following dependencies at the pattern level:
e a method called getLength,
e with no arguments,
e in a class called Foo,

e returning an int, and

declared to be public.

But unless this method exists and there actually are calls to it, this call pointcut
will be empty. But while pattern equivalence is a stricter condition, it offers some
advantages. The exact elements that match a pattern can always be determined statically
(given complete source code), and indeed quite simply. Thus, when possible, behavior
preservation arguments are based on preserving the meaning of patterns. Details on
analyzing and manipulating patterns are presented in Chapter 4, Working with Patterns.

Finally, advice bodies also contain code. This code, if it is itself reachable, can refer
to program parts that might not be referenced elsewhere; thus it must be considered in
analyses checking for dead or unreferenced code.

Chapter 3

Low-Level Refactorings
Reconsidered

structing more complex refactorings. This chapter reviews the low-level object-

oriented refactorings presented by Opdyke [Opd92], each edited for Java (from the
original C++) and augmented with extra preconditions and steps in order to guarantee
behavior preservation in AspectJ.

L ow-level refactorings are small refactorings useful both on their own and in con-

3.1 Creating a Program Entity

3.1.1 Create Empty Class

Define a new class with no locally defined members, optionally with a designated super-
class.
Preconditions:

1. The class’s name does not conflict with an already existing type (class, interface,
or aspect).

2. ! The class must not be subject to a combination of inter-type parent declarations
that will cause it to fail compilation. The possible conditions are:
(a) an illegal combination of superclasses

(b) inappropriate kinds of supertypes (e.g. if the class would be declared to extend
an interface)

!The cutting scissors symbol (=) denotes a precondition as particularly concerned with AOP behavior
preservation constraints.

33

34 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

(c) superinterfaces or abstract superclasses that an empty class cannot actually
implement

3. ¥ The class must not be subject to a set of inter-type member declarations that will
cause it to fail compilation (e.g. if two fields with the same name are introduced).?

These three preconditions guarantee that the refactored program will compile. Pre-
condition 1 guarantees a unique name (constraint L2). Precondition 2 ensures a unique
superclass (L1) and legal extendsimplements declarations (L7). Precondition 3 guaran-
tees that members introduced to the class do not cause compilation to fail, whether due
to local conflicts (L3, L4), redefinition of inherited fields (L6), or illegal overloading (L8).
Semantically equivalent behavior is guaranteed because a new class is never instantiated
or referenced; thus the program’s behavior does not change when it is added.

3.1.2 Create Interface

Define a new interface with no locally defined members, optionally with any number of
designated superinterfaces.?
Preconditions:

1. The interface’s name does not conflict with an already existing type.

2. 3 The interface must not be subject to a combination of inter-type parent or
member declarations that will cause it to fail compilation.

These preconditions guarantee that the new interface will compile: the new interface
will have a unique name (L2), will follow rules about extends and implements decla-
rations (L7), and will not include illegal members (L3, L4, L6, L8). The only check
necessary to verify that the combination of superinterfaces is valid is to verify that any
required overloadings are valid (L8).

As with a class, because the interface is never referenced, the behavior of the program
does not change when it is added.

3.1.3 Create Field

Add an unreferenced field to a class.
Preconditions:

1. The field’s name does not conflict with an existing locally defined, inherited, or
introduced field.

2 An introduced member would be illegal on a class ¢ if it fails to compile in c. In the case of a newly
created class, a member introduced to it might e.g. refer to another member that does not actually exist,
causing compilation to fail; or two fields with the same name could be introduced.

3Because C++ does not include interfaces, this refactoring is not based on one in [Opd92], but is an
obvious analog.

3.2. DELETING A PROGRAM ENTITY 35

2. If the field is not declared with private visibility, no name conflict occurs in any
subclasses of the target class.

These two preconditions guarantee that no name conflicts are created in the class
or its subclasses (L3, L6). Behavior is not changed because the field is not referenced,
and because pointcuts can only pick out uses (assignments and reads) of a field, not its
declaration. (Note that this new field does not include an initial assignment, aside from
Java’s implicit default initializer.)

3.1.4 Create Method

Add a locally defined method to a class. The method is either unreferenced or identical
(in signature and body) to an already inherited method.
Preconditions:

1. The new method will compile as a member of the target class.

2. If the new method will overload an existing method (either in the target class or
in its subclasses), it must either be more general (thus not capturing any calls
that would have invoked the existing method) or more precise and semantically
equivalent to the method it overloads.

3. If the target class has an inherited method that will be overridden by the new
method, either that method is unreferenced on the target class and its subclasses,
or the new method is semantically equivalent (e.g. identical) to the method it
overrides®.

The first precondition implicitly guarantees no signature conflicts with current locally
declared or introduced members of the class (L.4). The second precondition guarantees
valid overloading (L.8). The final precondition guarantees that even if the new method
overrides an inherited method, program behavior is preserved.

3.2 Deleting a Program Entity

3.2.1 Delete Unreferenced Class
Preconditions:
1. The target class is never referenced.

If a class is unreferenced, it will not be loaded or initialized and none of its members
will be called. Hence removing it does not affect any pointcuts in the program. Even if
patterns refer to the class or its members specifically, no possible joinpoints will ever be
reached. All program properties are preserved.

4As mentioned in the previous chapter, it is not always possible to determine whether a particular
method in a given class is referenced because of dynamic method dispatch. In many cases, however, it
is possible to determine conservatively that a method is not referenced.

36 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

(This is still a strict definition of referenced as referenced directly in program state-
ments, and does not include matching a given type pattern. For example, suppose the
class is a target of static inter-type declaration. Once the class is removed, the type
pattern that matched it will still cause the introduction to target any other types it
originally matched. If the pattern fails to match anything, this does not signal an error
in AspectlJ.)

3.2.2 Delete Unreferenced Field

Preconditions:
1. The field is never referenced (including implicitly in an initializer).

By similar rationale to deleting a class, deleting an unreferenced field does not affect
program behavior.

3.2.3 Delete Set of Unreferenced Methods

Delete a set of methods from a class.
Preconditions:

1. Each method to be deleted is

e not referenced from outside the set of methods to be deleted,
e or redundant because a semantically equivalent method is inherited®,

e or redundant because it overloads a semantically equivalent method with a
more general signature.

This refactoring is limited to unreachable methods. (Each program has a main
method that is always implicitly referenced.) Like an unreferenced field or class, an un-
referenced method does not trigger any pointcuts. If a semantically equivalent method
is inherited, removing a locally defined method simply causes that inherited method to
be invoked instead. If a semantically equivalent method is overloaded and we remove
the more specific method, the more general method will simply be invoked in its place.
Thus, behavior is preserved.

3.3 Changing a Program Entity

3.3.1 Rename a Class

Change the name of a class, including references throughout the program.
Preconditions:

SThere cannot be a redundancy because a method semantically equivalent to a method we want
to remove is introduced to a class from an aspect. Such an introduction, where the signature of an
introduced method conflicts with that of a locally declared method, is an error in AspectJ.

3.3. CHANGING A PROGRAM ENTITY 37

1. The new name doesn’t conflict with an already existing type.

To keep this change behavior preserving in aspect-oriented programs, it may be
necessary to modify type patterns. The following conditions must hold:

1. = If a type pattern matched this class before renaming and does not match after-
wards, it should be extended to match.

2. ¥ If a type pattern did not match this class before renaming and does match
afterwards, it should be narrowed to avoid matching.

The precondition ensures distinct type names (L2). The new steps guarantee that,
because the meanings of patterns are changed appropriately, references are semantically
equivalent. Thus, behavior is preserved.

3.3.2 Rename a Variable

Change the name of a variable. The name change is reflected throughout its scope. (The
scope includes subclasses if the variable is an inherited field.)
Preconditions:

1. The new name doesn’t conflict with an already existing variable in the same scope
(or in subclasses if applicable).

If the variable being changed is a field, the following conditions must also hold:

1. = The new name doesn’t conflict with a field introduced into the same type (or its
subtypes) from an aspect.

2. = If a field pattern matched this field before renaming and does not match after-
wards, it should be extended to match.

3. « If a field pattern did not match this field before renaming and does match
afterwards, it should be narrowed to avoid matching.

The precondition ensures that the new name doesn’t conflict with other variables
(L3). The new steps guarantee that, because the meanings of patterns are changed
appropriately, references are semantically equivalent. Thus, behavior is preserved.

3.3.3 Rename a Method

Change the name of a method m in a class ¢, and any overriding methods defined in
subclasses, as well as all references.
Preconditions:

1. If new signature does not conflict with, overload, or override an already existing
local, introduced, or inherited method in c.

38 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

2. If m is not declared private, no subclass of ¢ that inherits m defines a method
with the new name and a signature that would overload or override m.

The following conditions must also hold:

1. s If a method pattern matched m before renaming and does not match afterwards,
it should be extended to match.

2. 3 If a method pattern did not match m before renaming and does match afterwards,
it should be narrowed to avoid matching.

The preconditions ensure that the new signature doesn’t conflict with other methods
(L4) and preserves overriding and overloading relationships that are legal (L8). The
new steps guarantee that, because the meanings of patterns are changed appropriately,
patterns are semantically equivalent. Thus, behavior is preserved.

3.3.4 Change Type

Change the type of a set V' of variables/parameters and a set M methods to a new type
t. (Change the types of the variables and the return types of the methods.)
Preconditions:

1. Each expression and assignment involving a variable in V' or method in M would
remain semantically equivalent and type safe if its type were changed to t.

The following conditions must also hold for each variable v € V' that is a field:

1. s If a field pattern matched v before changing its type and does not match after-
wards, it should be extended to match.

2. ¥ If a field pattern did not match v before changing its type and does match
afterwards, it should be narrowed to avoid matching.

And for each method m € M:

1. = If a method pattern matched m before changing its type and does not match
afterwards, it should be extended to match.

2. = If a method pattern did not match m before changing its type and does match
afterwards, it should be narrowed to avoid matching.

The precondition ensures that type safety is preserved (L5). The new steps guarantee
semantically equivalent references from patterns. Thus, behavior is preserved.

3.3. CHANGING A PROGRAM ENTITY 39

3.3.5 Change Access Control Mode

Change the access control (visibility) mode of a member (method or field) 7 in a class
¢ from oldMode to newMode. The possible modes are private (visible in containing
class only), protected (in package and any subclasses), public (visible wherever the
container is visible), and default (package visibility).

Preconditions:

1. The class ¢ will compile with the new access control mode on <.
2. If newMode is private:

(a) The member is not referenced outside the class where it is defined.

(b) The member does not override an inherited member.
3. If newMode is default:

(a) The member 7 is not referenced outside the package where it is defined.

(b) The member does not override an inherited member that has non-default
visibility.

(¢) If the member is a field, no subclass of ¢ in the same package as ¢ declares a
field with the same name.

(d) If ¢ is a method

i. it is not overridden with private visibility in a subclass, and

ii. if oldMode is private, no subclass of ¢ in the same package as ¢ declares
a method that would be overloaded more specifically by 3.

4. If newMode is protected:
(a) The member is only referenced from the package where it is defined or from
subclasses of c.
(b) The member does not override an inherited member that has public visibility.
(c) If the member is a field, no subclass of ¢ declares a field with the same name.
(d) If the member is a method,

i. it is not overridden with private or default visibility in a subclass, and

ii. if oldMode is private or default, no subclass of ¢ in the same package as
¢ declares a method that would be overloaded more specifically by .

5. If newMode is public:

(a) If the member is a field, no subclass of ¢ declares a field with the same name.
(b) If the member is a method,

i. it is not overridden with non-public visibility in a subclass, and

40

CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

ii. if oldMode is private or default, no subclass of ¢ in the same package as
¢ declares a method that would be overloaded more specifically by .

The following conditions must also hold:

1.

2.

s« If a field or method pattern matched ¢ before changing its access control mode
and does not match afterwards, it should be extended to match.

< If a field or method pattern did not match i before changing its access control
mode and does match afterwards, it should be narrowed to avoid matching.

The first precondition ensures that requirements imposed on ¢ by abstract super-
classes or superinterfaces are still met. The preconditions that require current references
to ¢ to remain legal after the refactoring ensures both that the program will still com-
pile and that the same members are referenced (these could change in the case of an
overloaded method). The new steps guarantee semantically equivalent references from
patterns. Thus, behavior is preserved.

3.3.6 Add Parameter to Method

Add a new parameter of type ¢t to the declaration of a method m in a class ¢, and to
methods that override it in subclasses. In each call to m, add an argument default (an
expression that computes a value of type ¢; possibly null).

Preconditions:

1.

D.

The name of the new argument doesn’t conflict with another variable or parameter
in the method’s scope. This property must hold for all methods that override m
in subclasses.

. A method with the same signature as m before adding a parameter is not inherited

from a superclass or implemented interface.

. If m will override an inherited method after adding a parameter, the inherited

method is unreferenced on ¢ and its subclasses, or m is semantically equivalent to
it.

The method m with a parameter added does not create an overloading of a method
already in ¢ or in any subclass of c.

default is visible in all places where m is called.

The following must also hold for m:

1.

2.

s If a method pattern matched m before adding a parameter and does not match
afterwards, it should be extended to match.

s If a method pattern did not match m before adding a parameter and does match
afterwards, it should be narrowed to avoid matching.

3.3. CHANGING A PROGRAM ENTITY 41

The first precondition guarantees no name collisions. The second precondition guar-
antees that inheritance properties (11, I12) are preserved. The third precondition guaran-
tees that overriding will not change behavior. The fourth precondition guarantees that
no overloading occurs that might cause calls to m to be captured by another method
(or vice-versa). Because the new parameter is unreferenced, and with the new steps to
ensure semantic equivalence of patterns, behavior is preserved.

3.3.7 Remove Unreferenced Method Parameter

Delete a parameter p from a method declaration m in a class ¢. Unless m is declared
with private visibility, also delete this parameter from all subclasses where an overriding
method is defined.

Preconditions:

1. The parameter is unreferenced.
2. The corresponding parameter in each method overriding m is unreferenced.
3. The method m is not itself overriding an inherited method.

4. If m will override an inherited method once the parameter p is removed, the inher-
ited method is unreferenced on ¢ and its subclasses, or m is semantically equivalent
to it.

5. After removing p, the method m must not conflict with a locally defined or intro-
duced method declaration in ¢ (and in all subclasses if m is inherited).

6. After removing p, m does not overload a method already in ¢ or in any subclass of
c.

7. The expressions passed through p on calls of m have no side effects.
The following constraints must also hold:

1. == If a method pattern matched m before removing a parameter and does not match
afterwards, it should be extended to match.

2. =« If a method pattern did not match m before removing a parameter and does
match afterwards, it should be narrowed to avoid matching.

By the first two preconditions, p is unreferenced. By the third precondition, in-
heritance relationships will be preserved. The fourth precondition ensures that a new
overriding will not affect behavior. The fifth precondition guarantees unique member
names (L4). The sixth precondition guarantees that no overloading occurs that might
cause calls to m to be captured by another method (or vice-versa). The last precondi-
tion ensures that removing the computation of the parameter at call sites does not affect
program behavior. The extra steps ensure meaning preservation of patterns.

42 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

3.3.8 Reorder Method Parameters

Reorder the parameters of a method m in a class ¢. Also reorder parameters analogously
in all overriding methods in subclasses, and the actual parameters in all calls to these
methods.

Preconditions:

1. The expressions assigned to parameters in calls of m have no side effects. (If two
expressions of m do have side effects that are not independent, changing the order
in which they are evaluated could change program behavior.)

2. Before refactoring, m does not override a method defined in a superclass of c.

3. If m will override an inherited method once the parameters are reordered, the
inherited method is unreferenced on ¢ and its subclasses, or m is semantically
equivalent to it.

4. After the reordering, m does not overload a method already in ¢ or in any subclass
of c.

The following constraints must also hold:

1. s If a method pattern matched m before reordering parameters and does not match
afterwards, it should be extended to match.

2. ¥ If a method pattern did not match m before reordering parameters and does
match afterwards, it should be narrowed to avoid matching.

The first precondition guarantees that the parameters can indeed be reordered with-
out changing program behavior. The second and third preconditions preserve inheri-
tance relationships. The fourth precondition ensures that no overloading occurs that
might cause calls to m to be captured by another method (or vice-versa). The extra
steps ensure meaning preservation of patterns.

3.3.9 Add Method Body (Concretize Abstract Method)

Add a method body to an existing abstract method with no body.
Preconditions:

1. The method (with its new body) compiles.
Because an abstract method is never called, adding a method body cannot change

program behavior, and no new joinpoints pertaining to that method can be reached.
Program behavior is preserved.

3.3. CHANGING A PROGRAM ENTITY 43

3.3.10 Remove Method Body (Make Concrete Method Abstract)

Delete a method body from an existing method, making it abstract.
Preconditions:

1. The method is never called.

Because the method is never called, removing its body cannot change program be-
havior, and no joinpoints pertaining to that method become unreachable.

3.3.11 Replace Field References With Accessor/Modifier Calls

Convert all references to a variable v, except those in its accessor method, to calls to its
accessor method. Convert all assignments to v, except those in its modifier method, to
calls to its modifier method.

Preconditions:

1. The accessor and modifier methods for v are already defined (to simply get and
set v, respectively) on the class that contains v, have the same visibility as v, and
are not overridden in any subclasses.

2. s« If v is matched by any field patterns used to parameterize get or set pointcuts,
these pointcuts are not intersected with a within or withincode pointcut.

e The within and withincode pointcuts match joinpoints inside methods or
classes matching a certain pattern, and are commonly combined with other
pointcuts by intersection. For example:

set(Foo.a) && !'within(org.foo.*x)

This pointcut expression matches all sets to the field Foo.a that occur in
classes outside of packages whose names begin with “org.foo.”.

Because the point of this refactoring is to make the assignment happen some-
where else, if a pointcut depends on where the assignment occurs, its content
will change when this refactoring is applied. This precondition precludes this
possibility.6

3.3.12 Replace Statement List with Method Call

Replace a statement list L in a method m with the method call mec.
Preconditions:

5This precondition can be computed statically using a kind of data flow analysis based on pointcut
expressions. Alternatively, a stricter precondition can be adopted. The stricter precondition would
require that no within or withincode pointcut is parameterized with a type or method pattern that
matches any class or method where v is referenced. If this is the case, the intersection of any relevant
get or set pointcut with any within or withincode pointcut that is actually in the program will be
empty.

44 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

1. The called function, mc, is visible from the calling function, m.

2. The call to mc is semantically equivalent to L, i.e. their abstract syntax trees
are the same, up to variable renaming, and they reference semantically equivalent
items outside their scopes.

3. = The method mc is not matched by any method patterns. (This precludes new
invocation of advice parameterized by call, execution, and withincode point-
cuts.)

4. s« If any statement in L includes an assignment to or read from a field matched by
a field pattern used in a set or get pointcut, that pointcut is not intersected with
a within or withincode pointcut.

5. ¥ If any statement in L includes a method or constructor call matched by a method
or constructor pattern used in a call or execution pointcut, that pointcut is not
intersected with a within or withincode pointcut.

The first two preconditions ensure that the called method behaves identically to the
statements it replaces. The rest of the preconditions are AspectJ-specific, and guarantee
that this refactoring does not change which points in program execution cause advice to
be invoked. To preclude invoking advice on mc itself, we require that it is not matched
by any method patterns. Further, we do not want our use of the method call to cause
invocation of any advice not already invoked in our statement list. Similarly, we do not
want our use of the method call to preclude invocation of advice that was invoked by a
statement in the list. The only way, aside from the dynamically-determinable cflow and
cflowbelow pointcuts, to achieve this kind of limitation in a pointcut is to use within or
withincode pointcuts. By intersecting (&&) these with other pointcuts, it is possible to
constrain advice executions to joinpoints occurring in a specific set of types or methods.
Rather than attempting to fix these pointcuts to include or exclude specific joinpoints,
we simply require as a precondition that they do not apply.

3.3.13 Inline Method Call

Replace a method call mc with the body of the called method m.
Preconditions:

1. All variables and methods referenced from the body of m are visible from the caller
that contains mc.

2. % The method m is not matched by any method patterns. (This precludes losing
invocation of advice parameterized by call, execution, and withincode point-
cuts.)

3. ¥« If any statement in the body of m includes an assignment to or read from a
field matched by a field pattern used in a set or get pointcut, that pointcut is not
intersected with a within or withincode pointcut.

3.3. CHANGING A PROGRAM ENTITY 45

4. s« If any statement in the body of m includes a method or constructor call matched
by a method or constructor pattern used in a call or execution pointcut, that
pointcut is not intersected with a within or withincode pointcut.

The first precondition guarantees that the inlining will be valid. The rest of the
preconditions are AspectJ-specific, and guarantee that this refactoring does not change
which points in program execution cause advice to be invoked. So that the inlining
does not cause advice to not be run, we require that the method is not matched by any
method patterns.

Further, we do not want our inlining of the method body to cause invocation of any
advice not already invoked in our statement list. Similarly, we do not want the inlining to
preclude invocation of advice that was invoked by a statement in the list. The only way,
aside from the dynamically-determinable cflow and cflowbelow pointcuts, to achieve
this kind of limitation in a pointcut is to use within or withincode pointcuts. By
intersecting (&&) these with other pointcuts, it is possible to constrain advice executions
to joinpoints occurring in a specific set of types or methods. Rather than attempting
to fix these pointcuts to include or exclude specific joinpoints, we simply require as a
precondition that they do not apply.

3.3.14 Change a Class’s Superclass

Change the superclass of a class ¢ from class sg to s'.
Preconditions:

1. Each expression and assignment involving a variable of type ¢ (or any subtype)
would remain type safe if the superclass is changed.

2. All members inherited by ¢ from sy that are referenced on ¢ or any subclass of ¢ will
be replaced by semantically equivalent inherited members from s’. Here, semantic
equivalence refers not only to member definition, but pattern matches. That is, if
a member m is inherited from sy and is to be replaced by m’ from s, then:

e If m is a method, m’ has an identical name and signature, and all method
patterns that match m also match m/.

e If m is a field, m’ has the same name and type, and all field patterns that
match m also match m/.

3. No newly inherited method from s’ creates a more specific overloading of a method
in c.

4. No newly inherited method from s’ creates an illegal overloading of a method in c.
The following constraints must also hold:

1. = If a type pattern matched ¢ before changing its supertype and does not match
afterwards, it should be extended to match.

46 CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

2. = If a type pattern did not match ¢ before changing its supertype and does match
afterwards, it should be narrowed to avoid matching.

After verifying the preconditions, this refactoring changes the superclass of ¢ to s'.
Then it deletes from ¢ any member variables whose semantic equivalents are inherited
from the new superclass s’. If such a member variable is introduced to ¢ from an aspect
using static introduction, the type pattern for that introduction is narrowed to not
include c.

The first precondition guarantees type safety (L5). Precondition 2 ensures that in-
heritance has the same semantic effects on c¢. Preconditions 3 and 4 ensure that if
overloading occurs, it is valid and does not capture calls to a method in c.

The extra step of fixing type patterns guarantees meaning preservation of patterns.
The step of deleting member variables from ¢ that are inherited from s’ guarantees that
no (illegal) field overridings are created (L6).

3.3.15 Implement an Empty Interface

Any class can be declared to implement an interface that does not contain any members.
Program behavior is unchanged.

(This trivial refactoring is used in Chapter 6 within a high-level AOP-specific refac-
toring.)

3.4 Moving a Field

3.4.1 Move Field to Superclass

Move a field x to class ¢ from all subclasses of ¢ where it is defined. If has public
visibility, its visibility in ¢ will also be public; otherwise, the visibility will be protected.
Preconditions:

1. The field declarations that have the same name as x are identical across all sub-
classes that declare such a field.

2. The visibility of these declarations is either public or it is protected and all
references to the field occur in subclasses of c.

3. The superclass ¢ does not already contain a (private) field with the same name
as .

The following conditions must also hold:

1. s If a field pattern matched x in a subclass before and does not match x in the
superclass, it should be extended to match.

2. =« If a field pattern did not match x in a subclass before and does match z in the
superclass, it should be narrowed to avoid matching.

3.4. MOVING A FIELD 47

The first precondition guarantees that the field can be safely pulled up into the
superclass (including avoiding name conflicts , L3). The second precondition restricts
the allowed visibility modes in order to avoid overloading and overriding concerns en-
countered when increasing a field’s visibility. (This may be separately addressed by the
Change Access Control Mode refactoring, §3.3.5.)

The new steps ensure semantic equivalence of patterns. Thus, behavior is preserved.

3.4.2 Move Field to Subclasses

Move a field x from its current containing class ¢ to each of ¢’s direct subclasses.
Preconditions:

1. The field z is not referenced from within c.

2. The visibility of « is protected or public, or its visibility is default and all sub-
classes of ¢ are in the same package as c.

3. The type of z is visible in all subclasses.
The following conditions must also hold:

1. = If a field pattern matched x in the superclass before and does not match each x
in the subclasses, it should be extended to match.

2. =« If a field pattern did not match z in the superclass before and does match x in
any subclass, it should be narrowed to avoid matching.

The preconditions guarantee that the field can be safely moved down into the sub-
classes, where it would already be inherited. The new steps ensure semantic equivalence
of patterns. Thus, behavior is preserved.

48

CHAPTER 3. LOW-LEVEL REFACTORINGS RECONSIDERED

Chapter 4

Working with Patterns

crosscutting structure, and often need to be modified to preserve meaning when

refactoring. Pointcuts and inter-type declarations in AspectJ can be parameter-
ized with patterns that pick out types, fields, methods, and constructors. This chapter
discusses some ways that these patterns can be analyzed and modified for use in refac-
torings.

P atterns are the most basic mechanisms used in AspectJ to describe the targets of

4.1 Modifying Patterns

Many of the refactorings described in Chapter 3 require editing patterns with the goal of
adding or removing particular program elements (types, fields, methods, or constructors)
from the set matched by a pattern. Supposing we start with a pattern X,

e if we want to add an element, we synthesize a pattern p for that element, and
replace X with X || p; or

e if we want to remove an element, we synthesize a pattern p for that element, and
replace X with X && Ip.

This technique is simple—all we need is the ability to synthesize a pattern that selects
exactly the element to add or remove, and the union, intersection, and negation operators
on patterns. A pattern that selects exactly one element is easy to generate by using a
fully-qualified name and signature. Unfortunately, the set operators can only be directly
used on type patterns. That is, we can write

staticinitialization(Foo || Bar)

to add the type Bar to the type pattern Foo. But if we want to add a method bar () to
the method pattern void SomeClass.foo(), we cannot write

49

50 CHAPTER 4. WORKING WITH PATTERNS

call(void SomeClass.foo() || void SomeClass.bar())

(this is a syntax error because the call pointcut takes a MethodPattern). To work around
this problem in the case of pointcuts, we can make the following change instead:

call(void SomeClass.foo())

I
call(void SomeClass.foo()) || call(void SomeClass.bar())

This is an example of a general technique. That is, if we have a pattern X appearing
in a pointcut pc, and we want to achieve the effect of adding or removing a certain
program element e from the set matched by the pattern, we can perform one of the
following replacements. To add the element matched by pattern a:

pe(X)) =:pe(X) [[pe(a)
To remove the element matched by pattern a:
pe(X) =:pc(X) && pc(a)

In these replacements, the set operations in use apply to the pointcuts themselves, but
the effect is equivalent to modifying only the pattern. Although it is not always literally
possible, the refactorings in this thesis refer to broadening or narrowing patterns except
when pointcuts are specifically of interest. Because the only kind of pattern that can
occur outside of a primitive pointcut is a type pattern, between the set operations de-
fined on type patterns and on pointcuts, this kind of narrowing or broadening is always
possible.

4.2 Constituent Patterns

Identifier, type, arguments, and modifiers patterns are commonly used as constituent
parts of field, method, and constructor patterns. Type patterns may also be used on
their own to parameterize this, target, args, staticinitialization, handler, and
within pointcuts.

Grammar A grammar for AspectJ is presented in Appendix B, p. 77. The
following extended BNF conventions are used:

Text in 'quotes’ represents literal text.

| in the right hand side of a production rule indicates
a choice of possibilities.

+ denotes one or more occurrences.
% denotes zero or more occurrences.

? denotes the preceding item as optional.

4.2. CONSTITUENT PATTERNS o1

4.2.1 Identifier Patterns

IdentifierPattern — (LETTER|DIGIT|’*’)Jr

Identifier patterns are the simplest of the patterns in AspectJ. They specify a simple
regular expression that can match an identifier. The * symbol matches any identifier sub-
string, so the identifier refactor would be matched by patterns including *, refactor,
ref*, xactor, or r*xf*rx*.

Manipulating Identifier Patterns

As the simplest sub-patterns used in AspectJ, identifier patterns are atomic from the
view of this thesis. Rather than manipulating them directly, we will manipulate higher-
level patterns and, if a new identifier pattern needs to match a certain identifier, we will
synthesize the most straightforward identifier pattern possible by using the identifier
name itself.

4.2.2 Type Patterns

TypePattern — |IdentifierPattern (("." | ’..”) IdentifierPattern)* '+/? /[]'*
| 'V TypePattern
| TypePattern '&&’ TypePattern
| TypePattern ’||" TypePattern
| (TypePattern)

Type patterns match local or fully-qualified type names. The series of identifier
patterns separated by dots matches a type name. The double-dot (‘..”) matches any
string that begins and ends with a dot. A number of bracket-pairs ([]) can denote array
types. The + symbol causes a type pattern to match all subtypes of all matching types.
The ! symbol preceding a type pattern inverts the types that it matches. For combining
type patterns, && is the intersection operator and || is the union operator.

Manipulating Type Patterns

To include or exclude a specific type from a type pattern, we can explicitly
include or exclude the type by its fully qualified name. For example, if we want to
exclude org.rura.thesis.Foo from a type pattern 7', we can replace 17" with

T && lorg.rura.thesis.Foo

Similarly, we can include org.rura.thesis.Foo in a type pattern T by replacing it with

T || org.rura.thesis.Foo

52 CHAPTER 4. WORKING WITH PATTERNS

4.2.3 Arguments Patterns

ArgumentsPattern — (ArgumentsPatternPart (', ArgumentsPatternPart)™)?

ArgumentsPatternPart — (TypePattern|"..”)

Arguments patterns match the arguments of a method or constructor. Each part is
either a type pattern, which matches the type of a parameter, or ‘..”, which matches zero
or more parameters. A method or constructor’s parameters match an argument pattern
if the argument pattern’s parts can be matched in order to the method/constructor’s
parameters.

Manipulating Arguments Patterns

There isn’t always a clear way to broaden or narrow an arguments pattern, since it
depends on a combination of number of and types of parameters. Thus these are again
treated as atomic.

An arguments pattern that selects a specific method’s arguments can be synthesized
by simply listing the types of that method’s parameters in order.

4.2.4 Modifiers Patterns

ModifiersPattern — ("V? ("public|'private’|'protected'| static'| final'|' strict fp’))*

A modifiers pattern is used in a field, method, or constructor pattern to narrow the
possible field/method/constructor matches to those whose declarations have (or do not
have) certain modifiers. An empty modifiers pattern matches any declaration. Listing
a specific modifier requires that the declaration have that modifier. Listing a modifier
preceded by a ! requires that the declaration not have that modifier.

Manipulating Modifiers Patterns

A requirement for or against a specific modifier can be removed from a modifiers pattern
by simple deleting it from the pattern, or added by appending it. However, none of
the refactorings demand exactly this kind of change, so alterations are made at the
higher-level patterns that contain modifiers patterns.

A declaration-specific modifier pattern can be made by listing the modifiers on a
specific declaration.

4.3 Field, Method, and Constructor Patterns

These patterns pick out major program elements and are used to parameterize most of
AspectJ’s primitive pointcuts, such as call, execution, get, and set pointcuts.

4.3. FIELD, METHOD, AND CONSTRUCTOR PATTERNS 53

For simplicity, the throws patterns used to narrow method and constructor patterns
based on exceptions they can throw are not discussed here. The throws pattern is itself
just a type pattern and can be handled in the same fashion as other type patterns within
field, method, and constructor patterns.

4.3.1 Field Patterns

FieldPattern —— ModifiersPattern TypePattern (TypePattern ’./)? IdentifierPattern

A field pattern matches a field declaration based on its signature. Parts of the
signature are each matched to a sub-pattern:

e modifiers,
e the field’s type,
e (optionally) the type containing the field, and

e the field’s name.

Manipulating Field Patterns

A field pattern specific to a particular field can be synthesized by naming it explicitly
using the following parts:

1. a TypePattern using the fully-qualified name of the field’s type,

2. a TypePattern using the fully-qualified name of the field’s containing type, and

3. an |dentifierPattern using the field’s identifier.

A field pattern can be effectively expanded or shrunk using this synthesis approach

with the pointcut-level technique described in section 4.1.

4.3.2 Method Patterns
MethodPattern —— ModifiersPattern TypePattern
(TypePattern ’./)? IdentifierPattern '(" ArgumentsPattern /)’

A method pattern matches a method declaration based on its signature. Parts of the
signature are each matched to a sub-pattern:

e modifiers,

the method’s return type,

(optionally) the type containing the method,

the method’s name, and

the method’s arguments.

54 CHAPTER 4. WORKING WITH PATTERNS

Manipulating Method Patterns

A method pattern specific to a particular method can be synthesized by naming the
method explicitly using the following parts:

1. a TypePattern using the fully-qualified name of the method’s return type,
2. a TypePattern using the fully-qualified name of the method’s containing type,
3. an ldentifierPattern using the method’s identifier, and

4. an ArgumentsPattern listing the fully-qualified type names of the method’s param-
eters.

A method pattern can be effectively expanded or shrunk using this synthesis approach
with the pointcut-level technique described in section 4.1.

4.3.3 Constructor Patterns

ConstructorPattern —— ModifiersPattern (TypePattern ".”)? 'new’ (" ArgumentsPattern ')’

A constructor pattern matches a constructor declaration based on its signature. Parts
of the signature are each matched to a sub-pattern:

e modifiers,

e (optionally) the type containing the constructor, and

e the constructor’s arguments.

A constructor pattern is essentially a method pattern without a return type and
name.
Manipulating Constructor Patterns

A constructor pattern specific to a particular constructor can be synthesized by naming
the method explicitly using the following parts:

1. a TypePattern using the fully-qualified name of the constructor’s containing type,
and

2. an ArgumentsPattern listing the fully-qualified type names of the constructor’s pa-
rameters.

A constructor pattern can be effectively expanded or shrunk using this synthesis
approach with the pointcut-level technique described in section 4.1.

Chapter 5

New Fundamental Refactorings
for AOP

out existing object-oriented refactorings on AspectJ programs. But new refactor-

ings are also needed to help us take advantage of AOP features. This chapter
describes new low-level aspect-oriented refactorings—refactorings that pertain specifi-
cally to AOP program elements. The next chapter builds on these low-level refactorings
to describe systematic ways to abstract crosscutting concerns from existing code.

r I Y he low-level refactorings described in chapter 3 describe a basis for safely carrying

5.1 Aspects are Like Classes

Aspects can work like classes in many ways: they can contain methods and fields and
extend superclasses (or superaspects). In fact, the only thing that a class can have but
an aspect cannot is a (callable) constructor. Thus the most obvious set of aspect-specific
refactorings are simply straightforward analogs of refactorings that apply to classes or
members. These include:

1. Create Field, §3.1.3
2. Create Method, §3.1.4
Delete Unreferenced Field, §3.2.2

> w

Delete Set of Unreferenced Methods, §3.2.3

5. Rename Class (becomes Rename Aspect), §3.3.1
6. Rename a Variable, §3.3.2

7. Rename a Method, §3.3.3

95

56

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

CHAPTER 5. NEW FUNDAMENTAL REFACTORINGS FOR AOP

. Change Type, §3.3.4

. Change Access Control Mode, §3.3.5

Add Parameter to Method, §3.3.6

Remove Unreferenced Method Parameter, §3.3.7

Reorder Method Parameters, §3.3.8

Add Method Body (Concretize Abstract Method), §3.3.9

Remove Method Body (Make Concrete Method Abstract), §3.3.10
Replace Field References With Accessor/Modifier Calls, §3.3.11
Replace Statement List with Method Call, §3.3.12

Inline Method Call, §3.3.13

Change a Class’s Superclass (becomes Change an Aspect’s Superaspect or Super-
class), §3.3.14

Move Field to Superclass (becomes Move Field to Superaspect), §3.4.1

Move Field to Subclasses (becomes Move Field to Subaspects), §3.4.2

5.2 Creating a Program Entity

5.2.1 Create Empty Aspect

Define a new aspect with no locally defined members, optionally with a designated
superaspect.
Preconditions:

1.

2.

The aspect’s name does not conflict with an already existing type.

< The aspect must not be subject to a combination of inter-type parent or member
declarations that will cause it to fail compilation.

These preconditions guarantee that the new aspect will compile: it will have a unique
name (L2), will follow rules about extends and implements declarations (L7), and will
not include illegal members (L3, L4, L6, L8).

Because a new aspect is never referenced and contains no advice or inter-type decla-
rations, the behavior of the program does not change when it is added.

5.2. CREATING A PROGRAM ENTITY o7

5.2.2 Create Introduced Field or Method

Given a type pattern, add an unreferenced field or method to the set of types matching
that pattern using static introduction from an aspect. Each introduction into a type
has the same preconditions and effects on program behavior as a local addition (§3.1.3,
3.1.4).

Preconditions for each target type:
e If creating a field:

1. The field’s name does not conflict with an existing locally defined, inherited,
or introduced field.

2. If the field is not declared with private visibility, no name conflict occurs in
any subclasses of the target class.

e If creating a method:

1. The new method will compile as a member of the target class.

2. If the new method will overload an existing method (either in the target
class or in its subclasses), it must either be more general (thus not capturing
any calls that would have invoked the existing method) or more precise and
semantically equivalent to the method it overloads.

3. If the target class has an inherited method that will be overridden by the
new method, either that method is unreferenced on the target class and its
subclasses, or the new method is semantically equivalent (e.g. identical) to
the method it overrides.

We must verify these preconditions for every target type into which a member is
introduced. For an argument that these preconditions guarantee behavior preservation
in a single class, see sections 3.1.3 and 3.1.4 on p. 34.

5.2.3 Create Named Pointcut

Add a named pointcut declaration to a type.
Preconditions:

1. The pointcut’s name must not conflict with another member in the containing
type.

2. The pointcut expression assigned to the given name must compile in the containing
type.

3. If the pointcut’s name is the same as an inherited pointcut, either that inherited
pointcut is unreferenced on the target type and its subtypes, or the new pointcut
is semantically equivalent to the pointcut it overrides.

58 CHAPTER 5. NEW FUNDAMENTAL REFACTORINGS FOR AOP

4. If a subtype of the target type defines a pointcut with the same name, this new
pointcut declaration has the same or narrower visibility than the declaration in a
subtype.

Creating a pointcut declaration merely gives a name to a set of joinpoints without
associating any new behavior with them. Program behavior is not affected.
5.2.4 Create Empty Advice

Add a before or after advice declaration to an aspect with an empty body, or add an
around advice declaration with a body containing only a call to proceed (). The advice
may be parameterized by any pointcut expression.

Preconditions:

1. The advice’s pointcut expression must compile in the aspect containing the advice.

In the case of before or after advice, regardless of what pointcut is specified, an
empty advice body will cause nothing different to happen before or after the included
joinpoints. Similarly, around advice will immediately proceed to the included joinpoints.

5.3 Deleting a Program Entity

5.3.1 Delete Unreferenced and Empty Aspect

Remove an aspect that is unreferenced and contains no advice bodies or inter-type dec-
larations.
Preconditions:

1. There are no references to locally-defined or inherited members on instances of the
aspect.

2. The aspect contains no inter-type member introductions.
3. The aspect contains no inter-type parents, error, or warning declarations.
4. The aspect contains no advice bodies.

Like a class, if an aspect is unreferenced, none of its members will be called. Unlike a
class, however, an aspect can affect program behavior without being directly referenced
if it contains inter-type declarations or advice bodies.

5.3.2 Delete Unreferenced Introduced Field

Remove an inter-type field declaration that is not referenced on any of its target types.
Preconditions:

1. The field is not referenced on any of its target types (or their subtypes). Some
ways this condition could be reached are:

5.3. DELETING A PROGRAM ENTITY 99

e the type pattern that matches target types actually matches nothing, so the
field is in fact not introduced anywhere,

e all of the target types matching the type pattern are interfaces or abstract
classes that are never concretized by an implementing class, or

e most generally, the field is known to be unreferenced on each type to which
it is introduced and its subtypes.

Since the field is never referenced, no joinpoints associated with it will ever be reached
in the program. Thus removing it does not change program behavior.

5.3.3 Delete Set of Unreferenced Introduced Methods

Remove a set of inter-type method declarations that share a common target type pattern.
Preconditions:

1. Each method to be deleted is

e not referenced from outside the set of methods to be deleted (in any of the
types matching the type pattern),

e orredundant because a semantically equivalent method is inherited (in every
matching type),

e or redundant because it overloads a semantically equivalent method with a
more general signature (in every matching type).

As with an unreferenced field, no joinpoints associated with these methods will ever
be reached in the program. If a semantically equivalent method is inherited, removing a
locally defined method simply causes that inherited method to be invoked instead. If a
semantically equivalent method is overloaded and we remove the more specific method,
the more general method will simply be invoked in its place. Thus if one of these
conditions is satisfied for each member into which a method is introduced, removing the
introduction does not change program behavior.

5.3.4 Delete Unreferenced Named Pointcut

Remove a named pointcut declaration that is not referenced.
Preconditions:

1. The pointcut is never referenced (its initialization with a pointcut expression does
not count as a reference).

If the named pointcut is never referenced, it cannot affect program behavior and
removing its declaration will not prevent the program from compiling.

60 CHAPTER 5. NEW FUNDAMENTAL REFACTORINGS FOR AOP

5.3.5 Delete Unreachable Advice

Remove an advice declaration that can never be invoked because its pointcut contains no
joinpoints that can occur. In general, it is impossible to tell whether a given pointcut will
be empty, but in numerous cases (such as when the method pattern of a call pointcut
matches no methods) it is possible to know that a pointcut is empty.

Preconditions:

1. The pointcut parameterizing the advice declaration is empty.

5.3.6 Delete Empty Advice

Remove an advice declaration that does not execute any code. The advice may be
parameterized by any pointcut expression.
Preconditions:

1. If removing a before or after advice declaration, the body is empty.
2. If removing an around advice declaration, the body contains only a call to proceed ().

For any kind of advice that meets these preconditions, no code will be executed if it
is invoked, and thus it does not currently affect program behavior.

5.4 Changing a program entity

5.4.1 Rename an Introduced Member

Change the name of an introduced field or method. This has the same preconditions and
effects on program behavior as a local renaming (§3.3.2 and 3.3.3, p. 37), but generalized
to all targets of introduction.

5.4.2 Rename a Named Pointcut

Change the name of a declared pointcut and all references (including in subtypes).
Preconditions:

1. The new name doesn’t conflict with an already existing member in the containing
type.

2. If the new name is the same as an inherited pointcut, either that inherited point-
cut is unreferenced on the target type and its subtypes, or the new pointcut is
semantically equivalent to the pointcut it overrides.

3. Either the pointcut is private, or no subtype of the target type defines a pointcut
with the same name as the new name.

5.5. MOVING PROGRAM ELEMENTS 61

5.4.3 Add Parameter to Introduced Method

Identical to adding a parameter to a locally declared method (§3.3.6), but the precondi-
tions must be satisfied for all types matching the introduction target type pattern.

5.4.4 Remove Unreferenced Parameter from Introduced Method

Identical to removing a parameter from a locally declared method (§3.3.7), but the pre-
conditions must be satisfied for all types matching the introduction target type pattern.

5.4.5 Reorder Parameters of Introduced Method

Identical to reordering parameters of a locally declared method (§3.3.8), but the precon-
ditions must be satisfied for all types matching the introduction target type pattern.

5.4.6 Merge Introductions

Replace two inter-type member introductions in an aspect, differing only in their target
patterns, with a single introduction. If the original introductions have target patterns A
and B, the introduction that replaces them will have target pattern A||B.

Since the introduced member is itself equivalent, changing the way it is introduced
cannot affect program behavior, since both introductions are in the same aspect.

5.5 Moving Program Elements

5.5.1 Move Local Member Declaration to Introduction from Aspect

Move the definition of a member from within a type to an aspect. The declaration is
changed to specify the original type as the introduction target explicitly by using its
unambiguous name.

Preconditions:

1. The member must be public.

The precondition keeps the introduction simple because protected introduction is not
allowed and private introduction means private to the containing aspect.

5.5.2 Move Member from Aspect to Local Declaration

Move the definition of a member from introduction from an aspect into a local declaration
in each type that matches the introduction pattern.

There are no preconditions; if an inter-type member introduction is legal, the local
declarations must be legal in each target type.

62 CHAPTER 5. NEW FUNDAMENTAL REFACTORINGS FOR AOP

5.5.3 Move Supertype Declaration from Local to Aspect

Remove an extends clause with a supertype s from a type ¢, replacing it with a declare
parents: ¢ extends s statement. An analogous inter-type declaration can also be
used to replace an implements clause.

Since the declaration is legal locally, it will also be legal as an inter-type declaration.

5.5.4 Localize Inter-type parents Declaration

Given an inter-type parents declaration of the form declare parents: c extends

s, remove that declaration and change the locally declared superclass of ¢ to be s. An

analogous local declaration can also be used to replace an inter-type implements clause.
Since the inter-type supertype declaration is legal, it will also be legal locally.

5.5.5 Move Advice

Move an advice declaration from one aspect to another.

1. Any references to named pointcuts, variables, or patterns used to parameterize the
advice must resolve identically in the new aspect.

2. The advice body must compile in the new aspect.

3. The advice body must be semantically equivalent in its new context; that is, all
names must resolve identically after the move.

5.6 Altering Advice

5.6.1 Merge Advice Bodies

Given two before or after advice bodies with the same parameters, combine them by
moving one’s body block into the other’s body block.
Preconditions:

1. The order of execution of these two advice bodies with respect to the same join-
points does not affect program behavior, or is well defined statically.
5.6.2 Generalize before or after Advice to around Advice

Change before or after advice to equivalent around advice. To do this, change the
advice type to around and

e in the case of before advice, add a proceed () statement at the end of the advice
body;

e in the case of after advice, add a proceed() statement at the beginning of the
advice body.

5.6. ALTERING ADVICE 63

Because the same code occurs at the same time relative to each joinpoint, behavior
is not affected.

5.6.3 Inline Advice on Method Call

Inline the body of advice before, after, or around, a call pointcut, by changing
method call sites as follows for each class ¢ in which a matching call occurs.

For each matching method m called from ¢, create in ¢ a helper method m’ with the
same arguments and return type as m. m’ will contain the inlined version of the call
advice.

e For before advice:

ReturnType m/(aq,...,a,) {
advice body
return m(ay,...,ay);

e For after advice:

ReturnType m/(aq,...,a,) {
ReturnType result = m(ay,...,an);
advice body
return result;

}

e For around advice:

ReturnType m/(aq,...,an) {
advice body before proceed
advice body with proceed () replaced by m(aq, ..., an,)
advice body after proceed, including a return statement

}

Preconditions:

1. The actual names of arguments aq, ..., a,, the result variable, and the methods
m' are selected such that they are legal and not shadowed by declarations in the
advice body.

2. All references from within the advice body resolve equivalently from the scope of

m'.

3. The call pointcut is not intersected with within or withincode pointcuts.

Provided variable names are not captured (precondition 1) and advice bodies actually
can be inlined (precondition 2) the transformation technique described guarantees that
the advice code is executed equivalently. The final precondition guarantees that advice
execution is not contingent on where the method is called, thus guaranteeing that the
call can be safely moved into our new helper method.

64

CHAPTER 5. NEW FUNDAMENTAL REFACTORINGS FOR AOP

Chapter 6

High-Level AOP Refactorings

torings such as those described in chapters 3 and 5. Although low-level refac-

torings are often useful on their own, these refactorings address more complex
and specific design problems. In particular, the high-level refactorings described in this
chapter are intended to aid in the extraction of crosscutting concerns by deploying AOP
techniques in existing programs.

l l igh-level refactorings are composite refactorings built from fundamental refac-

6.1 Move Static Introduction

To move a static inter-type member introduction to a different aspect, we can inline
(localize) it from the original aspect into its target types (§5.5.2) and then extract it into
the desired target aspect (§5.5.1).

This is an example of a refactoring that accomplishes a simple but potentially useful
change and can be composed of the fundamental refactorings described in the previous
chapter. In a refactoring tool, this would likely be implemented as their own primitive
refactorings; the purpose of listing it here is to show that it can be achieved.

6.2 Extract Common Members to Aspect
Given a set of classes, extract common members into a new aspect.
e Create a new aspect a (§5.2.1).
e Select a set C' of classes.

e Create in the aspect a new, empty interface (§3.1.2). This will be used to group
the selected classes. Add declare parents: implements statements so that
each class implements this empty interface (§3.3.15).

65

66 CHAPTER 6. HIGH-LEVEL AOP REFACTORINGS

e Find a group of members that is semantically equivalent across the classes. Per-
form the Move Local Member Declaration to Introduction from Aspect refactoring
(8§5.5.1) for each member, moving the definition into the new aspect.

6.3 Extract Interface Support into Aspect

Given a class and an interface that it implements, move all features responsible for
supporting that interface into a new aspect. (Move only those members required by the
selected interface and not by any of the other interfaces the class may implement.)

e Select a class ¢ and an interface ¢ that it implements.

e Let M be the set of members of ¢ that implement members in ¢ and do not override
or implement any other members from other supertypes of c.

e Create a new aspect a (§5.2.1).

e Perform the Move Supertype Declaration from Local to Aspect refactoring, §5.5.3,
on the implements clause for .

e For each member in M, perform the Move Local Member Declaration to Introduc-
tion from Aspect, §5.5.1 to move its declaration into the new aspect.

6.4 Extract Disjoint State into Aspect

Select a group of members in a class that are disjoint from other members in the class.
That is, select a set of members D C M where:

e M is the set of all members in the class

e referencedFrom (X, m) is true iff the member m is referenced from within a member
of set X

e Vde D

- referencedFrom(M \ D, d)
A ¥Ym € M \ D, —referencedFrom (D, m)

Then, for each member in D, perform the Move Local Member Declaration to Intro-
duction from Aspect, §5.5.1, to move its declaration into the new aspect.

Chapter 7

Conclusions

oriented software development (AOSD). Because refactoring and AOP can con-

tribute in different ways to better-designed software, combining them can com-
pound their value. The refactorings presented here address many potential design
changes. Still, work in this area is only beginning, experience in AOSD practice is
small, and tools are lacking. Much additional work is required before these or other
refactorings can become accessible tools for the AOP developer.

T his thesis lays some of the foundations for incorporating refactoring into aspect-

7.1 Summary of Contributions

This thesis takes Opdyke’s [Opd92] set of low-level refactorings and reconsiders each
in the context of aspect-oriented programming. It also defines a new set of low-level
and composite refactorings that operate on aspect-oriented software. These entail the
following steps:

1. A simplifying assumption about overloading and inheritance is removed. (Opdyke
avoided overloading and simplified inheritance by allowing no more than one method
with the same name in any class.) This thesis addresses the full range of inheritance
and overloading possibilities in AspectJ.

2. In cases where C++ (the original basis for the refactorings) differs from Java (and
thus AspectJ), refactorings and constraints are converted from C++ to Java vari-
ants. This is most clearly manifested in the language requirements: for example,
Java does not allow overriding of inherited fields while C++ does. This thesis also
generalizes refactorings to include interfaces, a feature that does not exist in C++-.

3. The preconditions, steps, and behavior preservation arguments of existing refac-
torings are extended to guarantee behavior preservation in AspectlJ.

67

68 CHAPTER 7. CONCLUSIONS

4. A set of new refactorings that apply specifically to aspect-oriented programming
are defined. For each of these, preconditions and required steps are given, and the
transformation is argued to be behavior preserving.

7.2 Limitations of Approach
There are several limitations and assumptions in the approach of this thesis:

1. A large subset of AspectJ, but not the whole language, is discussed. Aspect car-
dinality, error and warning declarations, and throws patterns (see Special aspect
declarations, p. 19) are not addressed, because they are infrequently used lan-
guage features that would add complexity to the explanations in this thesis. (No
simplifying assumptions are made regarding Java.)

2. Refactorings attempt to avoid changing the meaning of dynamic pointcuts, but the
emphasis of these refactorings is on static program transformation. While there
may be better ways, such as dynamic program analysis, to guarantee behavior
preservation when dynamic pointcuts are in use, this thesis does not address these
possibilities.

3. The behavior of programs using reflection is not generally preserved.

7.3 Future Work

Aspect-oriented refactoring derives from research across multiple programming language
and software engineering disciplines, including program analysis and transformation,
aspect-oriented programming and separation of concerns, and actual software develop-
ment experience. Specific areas for future work include automatic refactoring tools, new
refactorings, better analyses to allow refactorings in more cases, and real-world evalua-
tion.

7.3.1 Automated Refactoring Tools

For refactoring to become a truly viable and efficient tool for software engineers, auto-
mated support is needed. Many of the analyses and transformations required are not
complicated, but are time-consuming and error-prone when executed by hand. An auto-
matic refactoring tool can help a programmer to experiment with a variety of program
designs, and nearly eliminates the cost of refactoring, making it convenient to refactor
whenever any design improvement is possible.

Aspect Mining

One task that must precede refactoring is deciding what parts of a program to refactor.
Especially with crosscutting concerns, these parts may be spread throughout a program

7.3. FUTURE WORK 69

and difficult to uncover, especially in complex and unfamiliar programs. Tools can
assist in this task by exploiting lexical, stylistic, and semantic features of source code.
Existing work in this area includes the Aspect Mining Tool [HKO01] and the Aspect
Browser [Gri98]. Though these tools are important first steps, the simple textual or
semantic analyses they perform will likely be superseded by more sophisticated, higher-
level analyses as AOP and refactoring experience matures.

7.3.2 Refactoring in the Real World

Studying the long-term development of commercial aspect-oriented software systems can
benefit AOP refactoring research in two ways: we can begin to understand how known
refactorings are really used, and we can observe and formalize ad hoc refactorings. A
better understanding of how AOP refactorings are used would illuminate the limitations
of these refactorings, such as cases where the conservative assumptions we make in order
to guarantee meaning preservation are too constraining. This could lead to improved
analysis techniques or a more flexible theoretical foundation for behavior preservation
arguments.

Major prior works on refactoring have taken the approach of describing refactorings
observed in actual software development experiences either as a process of reflection
by the author [Fow00] or by a more disciplined study of evolution in specific systems
[Opd92]. In both cases, experience illustrated the refactorings; the authors then de-
scribed the transformations they found most useful. This thesis concentrates largely
on small transformations that seem to be fundamental in most larger refactorings. But
specifically for higher-level refactorings, experience can lead to important new discover-
ies.

For either of these undertakings, a larger body of experience in aspect-oriented soft-
ware development is required.

7.3.3 A Formal Framework for AOP and Refactoring

Because AOP and Refactoring are both newcomers to scientific research, there is not yet
a widely accepted formal framework for discussing either the structure of AOP software,
nor the analyses and transformations of refactoring. As tools are developed and refined,
standard formal frameworks can help by enabling programmers to define and share refac-
torings. Another useful application of a formal framework would be in support of proofs
that refactorings are behavior preserving.

7.3.4 The Very Big Picture: Integration of Software Engineering Tools
and Techniques

This thesis brings together two disciplines whose common goal is to equip the software
engineer to achieve better design. These, however, are just two approaches out of many
that span the software life cycle. In particular, in recent years software engineers have
seen a proliferation of different models of their software systems—UML structure and

70 CHAPTER 7. CONCLUSIONS

interaction diagrams, architectural models, version control systems that track software
changes, and team-oriented systems that divide programs based on a who is responsi-
ble for different parts of the code. Each of these is an important departure from the
traditional view of a program as having one just one editable form (source code) and
one runnable form. Refactoring is one way of tightening a loop: rather than a unidi-
rectional flow from design to implementation, the design of already working code can
be improved in-place. But opportunities for this kind of unification exist between many
software engineering approaches and tools. I believe that this kind of integration, on a
large scale, is our best chance to give software engineers the kind of flexibility in working
with their systems that is commonly enjoyed by architects and other designers. This is
a considerable effort, but may make possible an integrated software engineering tool set
that is greater than the sum of its parts.

Bibliography

[B01]

[Bec97]

[Bec99]

[Com02]

[Fow00]

[Fow02]

[GHIV95]

[GJSBOO]

[GNO3]

[Goo02]

[Grio1]

Kent Beck et al. The Agile Software Manifesto. Website, 2001. Available at
http://agilemanifesto.org/.

Kent Beck. Smalltalk Best Practice Patterns. Prentice Hall, Upper Saddle
River, NJ, 1997.

Kent Beck. FExtreme Programming FExplained: Embrace Change. Addison-
Wesley, 1999.

AOSD Steering Committee. Aspect-Oriented Software Development: Tools
& Languages. Website, 2002. Available at http://aosd.net/tools.html.

Martin Fowler. Refactoring: Improving the Design of Ezisting Code. Addison-
Wesley, 2000.

Martin Fowler. Refactoring Tools. = Website, 2002. Available at
http://www.refactoring.com/.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
Reading, Mass., 1995.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Specification. Addison-Wesley, second edition edition, 2000.

William G. Griswold and David Notkin. Automated assistance for program
restructuring. ACM Transactions on Software Engineering and Methodology,
2(3):228-269, July 1993.

Google Web Directory. Refactoring Tools. = Website, 2002. Avail-
able at http://directory.google.com/Top/Computers/Programming/
Methodologies/Refactoring/Tools/.

W. G. Griswold. Program restructuring as an aid to software maintenance.
PhD thesis, University of Washington, 1991.

71

72

[Gri9s]

[HKO1]

[HK02]

[KHHT01]

[Mic68]

[0J90]

[Opd92]

[PSDF01]

[RBJ97]
[Tea02a]
[Tea02b]
[Tea03]

[TOHJ99]

BIBLIOGRAPHY

W. G. Griswold. Coping with software change using information trans-
parency. Technical Report CS98-585, Department of Computer Science and
Engineering, University of California, San Diego, August 1998.

Jan Hannemann and Gregor Kiczales. Overcoming the prevalent decompo-
sition of legacy code. In International Conference on Software Engineering,
Toronto, 2001. Workshop on Advanced Separation of Concerns.

Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java
& AspectJ. In Proceedings of the 17th Annual ACM conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
November 2002.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and
William G. Griswold. An overview of AspectJ. In European Conference on
Object-Oriented Programming, Budapest, Hungary, 2001. Springer. Available
from http://www.aspectj.org.

Donald Michie. ‘Memo’ functions and machine learning. Nature, 218:19-22,
1968.

William F. Opdyke and Ralph E. Johnson. Refactoring: An aid in designing
application frameworks and evolving object-oriented systems. In Proceedings
of SOOPPA °90: Symposium on Object-Oriented Programming Emphasizing
Practical Applications, September 1990.

William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis,
University of Illinois at Urbana-Champaign, 1992.

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gérard Florin.
JAC: A flexible framework for AOP in Java. In Reflection, Kyoto, Japan,
2001. JAC website: http://jac.aopsys.com/.

Don Roberts, John Brant, and Ralph Johnson. A refactoring tool for
smalltalk. Theory and Practice of Object Systems, 3(4):253-263, 1997.

The AspectJ Team. AspectJ API Documentation. Xerox Corporation, 2002.
Available from http://www.aspectj.org.

The AspectJ Team. The Aspect Programming Guide. Xerox Corporation,
2002. Available from http://www.aspectj.org.

The Aspect Team. AspectJ Quick Reference. Xerox Corporation, 2003.
Available from http://www.aspectj.org.

P. Tarr, H. Ossher, W. Harrison, and S.M. Sutton Jr. N degrees
of separation: Multi-dimensional separation of concerns. In Interna-
tional Conference on Software FEngineering, 1999. Hyper/J website:
http://www.research.ibm.com/hyperspace/HyperJ/HyperJ.htm.

Appendix A

AspectJ Quick Reference

The AspectJ 1.1b2 language reference [Tea03] is reproduced on the next two pages.

73

¢ [uorssaadxsg = | py * 2dA] 2dA] [s4a1fipopy |
{ dpog } [1s172dA] smoay)]

(spputto,]) mau - adAy [suarfipopy]
¢ [ss172dA] smoay]

(spputto,]) pJ * 2dA] 2dA [s4a1fipopy] 3oemysqe
{ dpog } [1s172dA] smoayy]

(sppurio,]) py * 2dA[adA] [s.4o1fipopy |

W0 [eIouad

1100dse

AU} JOU ‘00, JO SOUBISUT Y} O} SIQJAI ST} IOZI[BNIUI AU}

uf ()oof Sui[[ed Jo Jnsal Ay} 0} PIZI[BHIUI P[ILJ OIJB)S-UOU &
¢ (Joof = x * quro ju1 dyearrd

100dse Surreroop oy ur

K[UO J[qISIA PUB JuI0g K PIUMO X PIAWBU P[3IJ /Ul d1YRIS ©
X T ur0g 1 duyeys dearrd

"100dse Y} 10U JUI0F MU A}

0} $19Jo1 SIY) ‘Apoq oy} U] JuI0g Aq POUMO JOJONISUOD B
{0} (€ qur x qur) mau * qutog

00,] £q PIUMO (7u1)w Jul POYIAW JORI)SqE U
$(1ur) w00, Jul PRISqR

"100dse 2y} Jou ‘00,] JO doUBISUI Y} 0}
s19Ja1 1Y) ‘Apoq ayy U] -10adse Furuiyap oy} ul J[qIsiA AJuo
UodaIXF (O] MOIY) O} PIIB[OAP ST JBY) (JU1)ut jul POYIIW &
{ =} uondaoxgOr smoayy (1u1) w - 00, juz dyeArrd
100dse a3 J0u ‘00,7
JO oourjsul ay) 03 sI9Jal SIY) ‘Apoq a3 uj -oFexoed Furuyyop
A} UI 2I9YMAUER J[QISIA ‘00,7 KQ PAUMO (Ju1)ud Jul POYIAW ©
{0} (o) w00, jup

spoadsp ur - suolyede|daq Jaquian adAi-uaiu|

*201ApE 2y} Jo s1ojowered oy jo od4) pue roquinu dues Ay}
9q SN SjuWNS. YL "OOIAPE PUNOE UI d[qe[IeA. A[Uo
(spuown3.ay) passoad

-auo sy Fursojous jutod urof ayy Jo 1ed onels oy
MegopeIsImoguiorFuIsopuFsIy)

'S92INOSAI 19MIJ asn

Kew nq ‘()38 Jo1)B)SIIZIUI0 JUIOLSIY) JO JUS[RAINDD oY)
Hedopesiuioguiorsiyy

“jutod urol 9y} JnOQE UOHBULIOFUT JATOR[JOI
jutoquropsiyy

2014pD U swJoj |e1oads

[1s172dA] smoayy | (sppusto,]) punoae adAy

[(putio,r)] Summodyy (sppueio]) 13)ye

[(jpuio,)] Surwamyaux (spputio,]) 19)ye

(spputto,]) 193ye

(sypuLio,]) 310§9q
JO QU0 ST 2dAJ2014p 9IOYM

{ dpog } moog : addjao1apy [dpporns |
:WI0J [RIOUAT

Jul Ue 0JUI PALIOAUOD

9q [[1M YITYM .£232ju] UB UINJAI OS[e P[noys Apoq ay) pue

‘4232)u] ue 0) PALIAUOD SI ()Paddead jo anjea 3y Inq ‘dwes
{1} ((uueoo,q yuyyppo - () punoe 122/g0

uondodXs7] MOIY) 0} PAMO[[e ST Apoq 21} Inq ‘dures

{) (uuroo,y uupywo

1 uondasxgO] smoayy () punoue jui

*90IAPE PUNOIL Y Sk drnjeusIs auwres ay)

seq yorym ‘()paddoad Sursn £q [es oyy anunuoo ‘Apoq oy

uj “jur e SUINIOI PUe ‘(Jul)ur00,] jut 0 S[[ed JO PBIISUI SunI
{ =} ((uwr-oo,q ju1)jpvo : () punoae jur

Apoq 2y ur o paweu pue (2jdwexa 10y

“12Saju] 03 Juz) 9d£} 102[qo UE 0) POIIGAUOD ST PAUTISSE 9q 0}

anfeA oYL, "00,] Jo poy Aue 0} Juowuisse p[oyy 910Joq suni
{7} ()30 9 (00, 1)195 : (0 1220q0) 21053

Apoq 2y ur 7 paweu s1 paugisse

9q 0) ON[BA Y, "X'00,] Jul O) JUSWUSISSE PALJ 210J2q SUNI
{7} (Ys3w pp (oo jup)as : (1 1u1)d10§dq

PaUINIOI MOY| JO SSO[PIRSAI (Ju1)ui 00, Jul 0) S[[BJ IdYJe Sunt
() (uywroo,g o : () onge

*Apoq dy) ut 2 paureu

st uondooxa umonyy oy], ‘uondodxgpuno JIoN € SuImoIy)

Aq Apdniqe wingal Jeyy (qu1)ur 00, jui 0) S|[ed o)L sunt

{) ((uurood juyypo

: (2 uoydaoxgpuno,ioN) Suimeay () 193ye

‘uondaoxa ue Surmory

Aq Apdniqe winal Jeyy (qu1)ur 00, jui 0) S|[ed Iajye sunt
() (uyuroog muyywo - Surmoxyy () 103ge

*Apoq 9y} Ul X PAuILU ST AN[LA UINJOI AY) Jnq ‘QuIes
{ =} (u)wroo,q yur)jino : (x jur) Surwamyaux () 193ye
*A[[euwIou wInjal yey) (Juy)ut 00,] jut 0) S|[ed 1d)je suni
{ "} ((uy)uroo,y juy)ypvo : Jurwanyai () 13)ye

A°00,] ju1 po1J oY) Surpeal 210Joq sunt
{ "} (€00, ju1)123 : () d10J3q

spoadsp u1 suollele|2ap BDIAPY

‘paAtasal SIS [y
Ppajerodiodu] IAUS)) YoIeasy Oy O[ed €00 WSUAdo) (9)

‘ze10q | 10adsy 03 Surpuodsar100 109Ys 99UAIJOI JYEIP B ST SIY L

¢ moguiod : (sppueto,]) pr ymdyurod [s.o1/ipojy]
¢ (sppurioyy) pr ymdyurod [s.a1fipopy] ensqe
U0 [RIOUST

102/ ue osodxa jsnuw sty syuswejdwr jeyy nojurod

Auy -oSexoed Suruyop oy} woij 9[qIsia nojurod joensqe ue
< (0 12lg0)od yndyurod 1ensqe

*010yMAUR WOIJ 0) PALIdJAI 9q Ued Jey) Indjuiod joensqe ue
¢ ()od ndyurod 3oensqe drqnd

“u1 ue sasodxo ey ynojurod d1qrsia-oFesoed v
£ (1)s3.4p D (x°00,] 1u1)1as : (1 jur)od yndyurod

ad£y uruyyep oy woly Auo J[qisia nduiod €
¢ (Quroo, proa)1po : ()od yndyurod dpeard

saddy uz suoIulap 1NdUl0d

{ dpog }

[1s172dA syuowmayduur]

[2dA] spuayxa)

pI 13dse

[sw2yfipoy] [paBapiarad]
U0 [eIouad

Q0BJI)UI UL ST g

{ "+ } g syuowdduur 30adse
J0adse 1oe1)Sqe 10 SSB[O B SI g

{ " } g spudixa p 3oadse

sployy oyearid ss00€ Ued
{ "+ } py9adse pagajiard

 100dse o) sourjop
{ "} pradse

sadA} u1 dyeys .10 j242)-doy 1 s10edsy

99ualdjay ¥aInd ryoadsy

(IgadAT)
InJodA] __ IDJodA]
IDJadA] 979 InJodA]
wgadA] ;
[010+ 1wwdpr
upgadA]
wdpl [+ wd2dA[] iwqadd[[indsayipon]
Jodppaid
[ingsmo.ny smoap]
(" “ngadA]) Mau [- ingadA]] [wgsa1fipopy]
IDJA0JINAISUOD)
[wgsmo.y] smoayy |
(0 ngaddy) odpy [- 10d2dAL] indadd] [Indsayipop]
-IvdpoyiopN
a1oyM
(" “unyg | add)sBae
(44 | 2d£] NoB.rey
(/1 | 2dA sty

(uoissa.dxg)ju

(Imopur0g)MOPMOLJd
(moutog)moryd

(10.101911.415110))) SPOIUTYIIM
(I0dpoyrapy)apodunyyim
(ngadA[)uryym

()uonnddIXINIAPE
(ngadd [)1a1puey
(dpjaranas
(idpa11 98
(InqadA[yuonezifeniunne)s
(ig101on.5u0)) Juonezijeniuad
(Ing101on.4510)) JuonyeZIeIUL
(I401o1.435110)))UOTINIIXI
(IndpoyIapy)uonNIIXD
(11019141510)| 8D
(vdpoyiapr)ired

U0 [eIoUS3

‘nojutod 10 9DTAPE OY} UT PUNO] d[qeLIBA
® y)m paoejdar oq ued sdae pue Ja8.ae) ‘siy) ur uonisod Aue

§1.10YS OI. YOIYM JO

JSe] pue Js11J Y} ‘syudwngre omy Ised] 1e yim jurod urof Kue
(140Ys “* ‘110ys) s3ae

‘Jul Ue ST yorym

JO pu099s a1} ‘syuowngIe om) 1e 01913 d1oym jurod urof Kue
(u1) sSae

Jul U PUOD3S) Pue ‘Loginduy or'van/ Jo aouejsur

UE JSIIJ O} ‘SjuomNSIe oM} oIe 19y 219ym jutod urof Aue
(put ‘piogmmdur-orvanl’) sgae

Lioginduy-orvanl

Jo doue)suI Ue ST 300[qo JoS1e) oy 219yMm jurod urof Kue
(stogmnduy-orvanl’) yo31e)

Jui04 JO ddUBISUT

ue s1399[qo Funnoaxe Apuaing oy a1oym jurod urof Aue
(Juiod) sty

"SULIO)
juroguropsiy) pue ‘nojurod oures ay) ur punoq SI[QELIBA
‘SIOQUIAL OTJE)S SSI0E AJUO UBD Pasn uoIssaIdxe ueajooq
QUL anm SI ()pajquusgst-Suion.] d1oym jutod urof Aue

(Opargousgsi3uoni) 31

*[[B9 9Y) 9pNJOUI J0U SAOP SIY], “()2A0ut 2.n31]

P104 0} [[BD OB JO MO[J [01)U0d 3y} m0[aq Jutod urof Kue
(((2a0uira.un31,] p104)]1pd) MOIGMOLFI

*JIOSI [[B9 A} SOPN[OUL ST], “()aAoui 2.n31.]

104 0] [[BD OB JO MO[J [01u0d ay) ut jutod urof Aue
(((2a0ur-2.n31,] p104)]1pd) MOJD

*00x031q 1102 d3exded J) UI 10)ONNSUOD

Aue ur pauljop SI 9pod PAJRIOOSSE) d1aym jutod urol Aue
(()mauy,00x0q31q 110D) IPOIUTYIIM

()adaout2.4n31,] proa poyour

Q) Ul PauLJOp ST AP0 PAJRIOOSSE) d13yMm jutod urtof Kue
((Jaaowa.an31,] proa) IpOIUNPIIA

00x0q31q 110> 3Fexoed

Q) Ul PaULJIP ST AP0 PAJEIOSSL) d1aym jutod urof Kue
(1 0910q81q 1102) WM

SAIPOQ FDIAPE [[E JO UONINOIXD J)
(JuonndIXINIAPE
1201q
[o1ed © [Im pojpuey st odAiqns s)1 10 uondadxgf ue uaym
(+uondaoxgQ]) 13puey
pousisse s1ju104 JO plo1y djeAld-uou Aue uaym
(4 1u10g 4 21ALid]) 33
PEAI ST X'7UIO JUl UM
(xutoq 1t)38
Surpeo] 10Je ‘pazifeniul st 00,] 2dK) oy} usym
(004 yuonezieniune)s
(1u1)00,] 103ONI)SUOD Y} YIIM PIILIS ST Jeyf) (PI[[ed
s1.101onsu0d 1adns oY) 910j2q) uonezieniui-aid ayy
((1ur)mauroo,]) uonezijenru.ad
(1u1)00,] 10}ONIISUOD
Q) YIIM PaIe)s St 1By} 109[qo 00,7 Aue Jo uonezIjenIul Ay}
(()uy)mau-00,]) uoneZIfEHIUL

00,] J0 10Jon1)sU0d d1[qnd-Uou AUe JO UOIINIAXD A}
((")mau- 00,] 217gnd;) UOINIIXD

uondadxg] MoIy)

0} PAIB[OaP SI JBY) 00, JO POYIAU AUB JO UONNIIXD A}
(uondasxgOf SMo4y) (), 00,] 4) UONNIIXI

00,] JO 101oN1SU0D AUB 0] [[Bd B
(()mau00) rea

(Ju)ut 00,] proa poyjaw) 0} [[ed ©
((juyuroo, proa) [red

SINDIUI0d 9ANIWILId

$ps1TIngadA] : 3duapaddad daepap
o0 : I gadA] : 1§0s I[P
¢ uiig : noju10 : 10113 3IR[IIP
¢ Suryg : moju104 : UTLIRA JIR[IIP
¢ ysr72dA] syududdwt ;pgadA] : syudaed daepdop
¢ 2dA] SpudIXa I JadA] : syudaed axe[dap
w0 [eIoUdd

*90IAPE JAYJO
JOA0 90Uuopadald sey yorym ‘5113307 WOIJ AOTAPE JOAO
90ouapaoad sey d71.1moag woiy 9o1Ape ‘yutod urof yoes je
¢ 4 Bu13307 “A114n22g : 99UIPIAId dI2[I9P

uondadxyyyos-foadse-sio
ur paddeim a1e 00,7 Jo S10)oNNSUOD
9} JO SUONNOIXS W0 umoIy) uondooxgOI Aue
{(()maur0o,7)uonnaaxa
L uondadxg O] : 1308 3IL[IIP

u0j2]3u1g JO 101oN1)SU0O KUe 0] [[e0 B
SpUIJ 31 J1,, 4O1ONIISUOD ppq, 1011 UR s[eusis Io[iduiod oy
¢, UONINLSUO0D pnq,,
L (()mauuoga)3uig) 1o : 1013 B[P
Ju104 10§ PO Y} JO APISINO JUIOJ
JO p[o1y Aue 0] 39S © SpUIj J1 JI , 125 ppq,, surem 1o[1dwoo oy
¢ a8 png,,
L (uIOZ)uIIIN; PP (4 TUI0] 4)19S : SUTLIBM JIR[IIP

[pue 7 sjuowardur H
S 7 syusupdur O : syudaed daepIp

* Jo sseoradns [euISLIo oy} pud)Xo 0} PAIB[OIP SI (7

J1 1301 A[uo ST ST, (7 SI) JO sse[o1adns oy} Jey) SoIe[odp
£ SpudIXa) : syudaed dxepIP

s10adsp u1 suoneJe|2aqg adAir-Jo1u| JoaylQ

76

APPENDIX A. ASPECTJ QUICK REFERENCE

Appendix B

AspectJ Grammar

The following grammar describes the AspectJ 1.0 language (thereby including Java pro-
grams). This thesis does not discuss all features of the language.

The starting symbol of each file input to the AspectJ compiler is the CompilationUnit.

Notation This grammar uses the following extended BNF conventions:
Text in 'quotes’ represents literal text.

| in the right hand side of a production rule indicates a
choice of possibilities.

4+ denotes one or more occurrences.
% denotes zero or more occurrences.

? denotes the preceding item as optional.

Type Declaration

AspectJ allows aspects to be declared at the top level (in a CompilationUnit) or static
within types.

TypeDeclaration —— ClassDeclaration
| InterfaceDeclaration
| AspectDeclaration

77

78

Aspect Declaration

AspectDeclaration —
NestedAspectDeclaration —
UnmodifiedAspectDeclaration —
AspectBodyDeclaration —

Aspect Members

AspectBodyDeclaration

APPENDIX B. ASPECTJ GRAMMAR

(Modifier)* UnmodifiedAspectDeclaration

'static’ (Modifier)* UnmodifiedAspectDeclaration

'aspect’ Name
(extends’ Name)?

(“implements’ Name (") Name)™)?
('"dominates’ Name (', Name))?
/{/

(AspectBodyDeclaration)*

/}/

Initializer

NestedClassDeclaration
NestedInterfaceDeclaration
MethodDeclaration
NestedAspectDeclaration
PointcutDeclaration
AdviceDeclaration
InterTypeMethodDeclaration
InterTypeFieldDeclaration
InterTypeDeclare

Initializer

| PointcutDeclaration

| AdviceDeclaration

| InterTypeMethodDeclaration
| InterTypeFieldDeclaration

| InterTypeDeclare

79

Pointcuts

Named pointcuts may be declared in any type (class, aspect, or interface).

PointcutDeclaration — (Modifier)* 'pointcut’ FormalParameters
(" 2" PointcutExpression)?
| PointcutDeclaration

PointcutExpression —— PointcutExpression && PointcutExpression
| PointcutExpression || PointcutExpression

| 'V PointcutExpression

| /("PointcutExpression’)’

| Identifier Arguments

| PrimitivePointcut

PrimitivePointcut — (‘call’ | "execution’ | "initialization’ | "withincode’)

'(" ConstructorPattern /)’
("call’ | "execution’ | "withincode’) (" MethodPattern ')’
('staticinitialization’ | "handler’ | "within’) '(" TypePattern ')’
("this’ | 'target’ | 'args’) '(’ TypePattern | Identifier /)’
("eflow’ | 'eflowbelow”) '(" PointcutExpression /)’
"if" '(" Expression)’

Advice

AdviceDeclaration — (Modifier)* AdviceType '
PointcutExpression Block

AdviceType —— ’before’ FormalParameters
| 'after’ FormalParameters 'returning’ ('('FormalParameter’)’)?
| 'after’ FormalParameters 'throwing’ ('('FormalParameter’)’)?
| ’after’ FormalParameters
|

ReturnType ‘around’ FormalParameters ("throws’ NameList)?

80 APPENDIX B. ASPECTJ GRAMMAR

Inter-Type Declarations

Field Introduction

InterTypeFieldDeclaration — (Modifier)* Type InterTypeVariableDeclarator
(InterTypeVariableDeclarator)*

InterTypeVariableDeclarator — TypePattern ' Identifier ([']")*
(" =’ Variablelnitializer)

Method Introduction

InterTypeMethodDeclaration — (Modifier)*

ReturnTypeTypePattern ’.’ Identifier FormalParameters ('[/]")*
("throws’ NameList)? (Block)?

Other Inter-type Declarations

InterTypeDeclare — ’declare’ 'parents’ '’

TypePattern (‘extends’ Name | “implements’ NamelList)
| 'declare’ ('warning’ | 'error’) '/

PointcutExpression ’ i StringLiteral
| 'declare’ 'soft’ ' ! TypePattern’:’ PointcutExpression

81

AspectJ Patterns

|dentifierPattern — (LETTER|DIGIT|"¥")"

TypePattern — IdentifierPattern (("." | ..’) IdentifierPattern)” '+'? /[]’
'l TypePattern

TypePattern '&&' TypePattern

TypePattern ’||” TypePattern

(TypePattern)

ArgumentsPattern — (ArgumentsPatternPart (", ArgumentsPatternPart)*)?

ArgumentsPatternPart — (TypePattern|..”)
ModifiersPattern — (’'? Modifier)”

FieldPattern —— ModifiersPattern TypePattern
(TypePattern ’.")? IdentifierPattern

MethodPattern —— ModifiersPattern TypePattern
(TypePattern ’./)? IdentifierPattern '(" ArgumentsPattern)’

ConstructorPattern —— ModifiersPattern (TypePattern './)?
'new’ (" ArgumentsPattern ')’

Referenced Java Grammar Elements

The language elements listed here are referenced from the preceding AspectJ grammar
rules, but are standard parts of the Java language. When an element’s meaning is not
obvious, a short explanation is provided.

Modifier — 'private’ | 'public’ | 'protected’
| staticd | 'abstract’ |’ final’ | 'strictfp’

Arguments arguments to a method or pointcut call
Block a { block } of statements

Identifier

Initializer an class instance or static initializer code block

MethodDeclaration

82 APPENDIX B. ASPECTJ GRAMMAR

Name a local or qualified name (e.g. foo or org.rura.Foo.fo00)
Namelist a comma-separated list of names
NestedClassDeclaration

NestedInterfaceDeclaration

ReturnType

StringLiteral

Variablelnitializer expression used to initialize a variable (after the = sign)

